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Abstract 19 

During cortical synaptic development, thalamic axons must establish synaptic connections 20 

despite the presence of the more abundant intracortical projections. How thalamocortical 21 

synapses are formed and maintained in this competitive environment is unknown. Here, we show 22 

that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity 23 

in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in 24 

thalamocortical synapses accompanied by a transient increase in intracortical excitatory 25 

connections. Three-dimensional reconstructions of cortical neurons from serial section electron 26 

microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often 27 

receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of 28 

the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical 29 

inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in 30 

Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an 31 

important developmental synaptic refinement process at dendritic spines. 32 

 33 

  34 



Introduction 35 

The cerebral cortex receives synaptic inputs from various cortical and subcortical areas including 36 

the thalamus. In the mouse brain, innervation of the cortex by projecting neurites called axons 37 

begins during embryonic development and continues for the first several postnatal days (Garel 38 

and Lopez-Bendito, 2014). Only after the axons project to their approximate target areas, hosting 39 

their suitable postsynaptic partners, does an intense period of synapse formation occur, 40 

corresponding roughly to the second and third postnatal weeks in mice (Li et al., 2010). Cortical 41 

excitatory synapses, which primarily use the neurotransmitter glutamate, are formed between 42 

dendritic protrusions called spines and axonal projections coming from two predominant inputs: 43 

intracortical and thalamic. Though the bulk of the cortical synapses from both of these inputs are 44 

made during the same early postnatal synaptogenic period (P5-P21) (Nakamura et al., 2005), 45 

whether they form through similar or differential mechanisms is unclear.  46 

Intracortical and thalamocortical connections can be distinguished as they primarily contain 47 

either vesicular glutamate transporter-1 (VGlut1) or VGlut2 in their presynaptic terminals, 48 

respectively (Kaneko and Fujiyama, 2002). In most cortical areas, VGlut1-positive (VGlut1+) 49 

intracortical projections greatly outnumber the VGlut2+ thalamic projections. The cellular and 50 

molecular mechanisms through which thalamocortical connections are established and 51 

maintained, despite steep competition from the vastly more abundant intracortical axons, have 52 

yet to be elucidated. 53 

Concurrently with the synaptogenic period, non-neuronal cells called astrocytes begin to 54 

populate the cortex, producing and secreting factors that promote synaptogenesis (Eroglu and 55 

Barres, 2010). For example, hevin (a.k.a. synaptic cleft-1 or SPARC-like 1) is an astrocyte-56 



secreted extracellular matrix protein that localizes to the clefts of excitatory synapses (Johnston 57 

et al., 1990; Lively et al., 2007) and promotes excitatory synaptogenesis (Kucukdereli et al., 58 

2011). Using a combination of in vivo and in vitro approaches, here we show that in the cortex, 59 

hevin is specifically required for the formation of thalamocortical synapses. Moreover, using 60 

three-dimensional reconstructions of serial-section electron microscopy (ssEM)-imaged 61 

dendrites and axons, we show that P25 hevin KO dendritic spines often make multiple excitatory 62 

contacts with different axons.  63 

Multiply-innervated spines were identified nearly a half-century ago by Jones and Powell (1969). 64 

The majority of these spines make two distinct types of synapses: one excitatory with an 65 

asymmetric postsynaptic density (PSD) opposed to an axon with round presynaptic vesicles, and 66 

one inhibitory synapse with a symmetrical PSD and flattened vesicles (Jones and Powell, 1969; 67 

Knott et al., 2002; Chen et al., 2012). A small percentage, however, make multiple excitatory 68 

contacts (termed SMECs, i.e. spines with multiple excitatory contacts). We found that SMEC 69 

structures are frequent earlier in development at P14 in WT but essentially disappear by P25, 70 

indicating that they represent a transient stage in synaptic spine maturation. This developmental 71 

refinement is impaired in hevin KO mice. Moreover, using both confocal imaging as well as 72 

immunolabeling of electron micrographs with antibodies specific to VGlut1 and VGlut2, we 73 

found that these SMECs often contact thalamic and cortical axons simultaneously. These results 74 

suggest that, during cortical synaptic development, dendritic spines serve as sites of competition 75 

between thalamic and cortical axons. Through secretion of hevin, astrocytes help maintain 76 

thalamic inputs onto cortical neurons and facilitate resolution of SMECs into singly-innervated 77 

spines. 78 

  79 



Results 80 

Loss of Hevin Results in Deficient Thalamocortical Synaptic Connectivity 81 

The astrocyte-secreted synaptogenic protein hevin (a.k.a. SPARC-like 1/SPARCL-1 or Synaptic 82 

Cleft-1/SC1) increases the number of synapses made between retinal ganglion cells (RGCs) in 83 

vitro and is required for the correct formation and maturation of RGC synapses onto their 84 

postsynaptic target, the superior colliculus (Kucukdereli et al., 2011). Hevin expression is not 85 

restricted to the retinocollicular system. Hevin is expressed throughout the cortex in a 86 

developmentally regulated manner, peaking during P15-P25, a time period that coincides with 87 

intense synapse formation, maturation and elimination events in the cortex (Figure 1A,B). 88 

Staining for cell-specific markers confirms that hevin expression is largely restricted to 89 

astrocytes in the cortex (Figure 1C-E). 90 

In order to determine the role of hevin in cortical synaptic development, we investigated synaptic 91 

connectivity in the synaptic zone (S/Z, a.k.a. Layer I) of the mouse primary visual cortex (V1 92 

region) in littermate age-matched hevin KO and wild-type (WT) mice using 93 

immunohistochemistry (IHC). Excitatory pyramidal neurons from upper cortical layers project 94 

extensive dendritic trees to this region and form a large number of the cortical synaptic 95 

connections. Cortical neurons receive two main classes of excitatory inputs: 1) the intracortical 96 

connections that are VGlut1 positive (VGlut1+), and 2) the sensory pathway inputs from the 97 

thalamus that are VGlut2+. The majority of the excitatory connections within the S/Z are of 98 

intracortical origin. On the other hand, the bulk of thalamocortical connections are made onto 99 

layer IV with a subset projecting to other layers including S/Z (Figure 2A) (Kaneko and 100 

Fujiyama, 2002; Khan et al., 2011). To determine the role of hevin in the formation of these 101 



different classes of cortical synapses, we quantified the number of synaptic puncta as the co-102 

localization of the presynaptic VGlut1 or VGlut2 with postsynaptic PSD95 at P25 in littermate 103 

hevin-KO and WT mice. This synapse quantification assay takes advantage of the fact that pre- 104 

and post-synaptic markers are within separate compartments (axons and dendrites, respectively), 105 

but they appear to co-localize at synapses due to their close proximity (Ippolito and Eroglu, 106 

2010). Surprisingly, we found that the number of VGlut1+ intracortical synapses in the S/Z of 107 

hevin KOs were significantly higher when compared to littermate WTs at P25 (Figure 2B). In 108 

contrast, thalamocortical VGlut2+ synapses were profoundly reduced in hevin KOs compared to 109 

WTs at P25 (Figure 2C). It is important to note that the appearance of co-localized VGlut/PSD95 110 

puncta is not merely due to chance, since the randomization of puncta by rotating the channels 111 

out of alignment by 90 degrees nearly abolished occurrence of co-localized puncta in both the 112 

WT and KO (Figure 2–figure supplement 1).  113 

The severe loss of thalamocortical synapses in hevin KOs was not due to a gross cellular defect 114 

in hevin KO cortices, because we found that neuronal density and layering was similar between 115 

P25 WT and hevin KO (Figure 2–figure supplement 2A). However, we observed a significant 116 

reduction in VGlut2+ synaptic terminals across multiple cortical layers in the hevin KOs (Figure 117 

2–figure supplement 2B). This reduction in thalamic synaptic terminals was not due to the lack 118 

of thalamic neurons in hevin KOs at the dorsal lateral geniculate nucleus (dLGN) that project to 119 

V1 (Figure 2–figure supplement 3A). Moreover, by using a viral approach to trace the thalamic 120 

axons that project to V1 cortex, we found that lack of hevin did not impair the ability of thalamic 121 

projections to reach the S/Z (Figure 2–figure supplement 3B-D).  122 

Hevin expression in the cortex starts to increase by the end of first postnatal week 123 

(corresponding to the start of synaptogenic period) peaking in abundance during the critical 124 



periods of plasticity in the cortex; hevin levels also remain high in the adult (Figure 1B). 125 

Therefore, we next investigated whether loss of hevin also alters synapse numbers in early 126 

postnatal (P7) or adult (12-week-old) mice. The number of VGlut1+ synapses in P7 hevin KOs 127 

trended towards an increase when compared to littermate WTs, but this increase was not yet 128 

significant (Figure 3B). However, similar to P25, P7 hevin KO cortex showed a severe deficit in 129 

VGlut2+ synapses (Figure 3C). This finding indicates that hevin is required for the formation of 130 

thalamocortical synapses in the early developing mouse brain.  131 

The specific loss of thalamocortical synaptic connectivity in hevin KOs was not merely a 132 

developmental delay in thalamocortical synaptogenesis, since VGlut2+ synapse density was still 133 

significantly lower in the 12-week old hevin KO adults compared to WT (Figure 3E). However, 134 

the number of VGlut1+ synapses in the hevin KOs returned to normal levels in the adult (Figure 135 

3D), indicating that the changes we observed in the VGlut1+ synaptic connectivity in the 136 

developing (P25) hevin KOs are due to a transient offsetting of the reduced VGlut2+ connections 137 

by VGlut1+ intracortical synapses. In agreement with this possibility, recordings from P23-P26 138 

mice did not show any significant differences in miniature excitatory postsynaptic currents 139 

(mEPSCs) in layer 2/3 pyramidal neurons of hevin KOs when compared to their littermate WTs 140 

(Figure 2–figure supplement 4). 141 

Taken together, these results show that hevin is required for normal formation and maintenance 142 

of VGlut2+ thalamocortical connections in the cortex. Our findings also demonstrate that lack of 143 

hevin results in a transient increase in intracortical synapses. This increase in intracortical 144 

synapses could either be mediated through a homeostatic mechanism that compensates for lost 145 

thalamic input and/or be driven by a transient competitive advantage for cortical axons over the 146 

thalamic inputs to establish synapses.  147 



Hevin is Sufficient to Induce Thalamocortical Synapse Formation 148 

Our analyses of excitatory synaptic development in hevin KO mice revealed an important role 149 

for hevin in the development of thalamocortical circuitry (Figures 2-3). Therefore, we next 150 

investigated whether hevin is sufficient to induce thalamocortical synaptogenesis. To address this 151 

question we first utilized in vitro assays with purified cortical and thalamic neurons. To do so we 152 

immunopurified cortical neurons from hevin KO pups and plated them either alone or in the 153 

presence of equal number of purified thalamic neurons (Figure 4A). Next we treated these cells 154 

with growth media with or without hevin and determined the effect of hevin treatment on the 155 

number of VGlut1+ or VGlut2+ excitatory synapses made onto cortical neurons (Figure 4B-E). 156 

Hevin treatment did not increase the number of VGlut1+ synaptic puncta (determined as the co-157 

localization of VGlut1 and PSD95) in either the cortical neuron only cultures or in the 158 

cortical/thalamic neuron co-cultures (Figure 4B,C). Hevin also did not significantly affect 159 

VGlut2/PSD95-positive synapses in the cortical neuron-only cultures (Figure 4D,E), which were 160 

already at low quantities due to the fact that only a small portion of cortical axons expresses 161 

VGlut2 (Wallen-Mackenzie et al., 2009). However, hevin treatment significantly increased 162 

VGlut2+ synapse formation onto cortical neurons in cortical-thalamic co-cultures (Figure 4D,E). 163 

These in vitro evidence strongly suggest that hevin specifically induces formation of 164 

thalamocortical synapses. 165 

Virally tracing the thalamocortical axons that innervate the S/Z in hevin KOs revealed that 166 

thalamocortical projections are intact in the hevin KO (Figure 2 - figure supplement 3B-D), but 167 

they do have defects in establishing thalamocortical synapses. Therefore, we next tested whether 168 

injection of hevin into the developing cortex was sufficient to increase thalamocortical synaptic 169 

connectivity in vivo.  To do so, pure hevin protein was directly injected into Layer II/III of P13 170 



hevin KO V1 (Figure 4F). After 3 days, the brains were fixed and immuno-stained for pre- and 171 

postsynaptic markers and then imaged by confocal microscopy approximately 100 µm laterally 172 

to the injection site (Figure 4F). Compared to vehicle-injected littermate controls, hevin-injected 173 

cortices showed a robust increase in VGlut2+ thalamocortical terminal staining throughout the 174 

S/Z and Layer II/III directly adjacent to the site of injection (Figure 4F, asterisk and arrow, 175 

respectively). Quantitative analysis of co-localized VGlut2/PSD95 synaptic puncta in the S/Z 176 

also revealed a significant increase in thalamocortical synapses in hevin-injected cortices 177 

compared to the vehicle-injected littermates (Figure 4G,H). By contrast, the number of co-178 

localized VGlut1/PSD95 synaptic puncta was not affected by hevin injection (Figure 4–figure 179 

supplement 1). Combined with our in vitro data, these in vivo experiments demonstrate that 180 

hevin specifically induces thalamocortical synaptic connectivity without affecting intracortical 181 

connectivity. 182 

Loss of Hevin Leads to Morphological Immaturity of Dendrites and Mislocalization of 183 

Excitatory Synapses to Dendritic Shafts 184 

In the cortex, the majority of excitatory synaptic contacts are compartmentalized onto submicron 185 

structures called dendritic spines (Harris and Kater, 1994). Cortical dendritic spines, including 186 

those in V1, follow a stereotypic maturation timeline (Irwin et al., 2001). Long, highly motile 187 

filopodia-type protrusions abundant in early development give way to short, stable, wide-headed 188 

mushroom spines in the mature brain (Figure 5–figure supplement 1A) (Kaneko et al., 2012). 189 

The spine maturation timeline coincides to a large extent with the expression of hevin protein, 190 

which reaches its highest levels at P25 (Figure 1A,B). This observation prompted the following 191 

question: Does the deficient thalamocortical connectivity in hevin KO coincide with aberrant 192 

synaptic morphology? In order to address this question, we investigated whether hevin is 193 



involved in the structural development of spine synapses. To do so, we analyzed dendritic 194 

morphology in the secondary and tertiary dendrites of layer II/III pyramidal neurons, which 195 

receive the majority of the excitatory connections within the S/Z. Analyses of spines in V1 of 196 

littermate hevin KO and WT mice at P25 by Golgi-Cox staining showed a significant increase in 197 

immature filopodia-like protrusions in P25 hevin KOs concomitant with a decrease in mature 198 

mushroom spines compared to littermate WT controls (Figure 5–figure supplement 1B). There 199 

was no significant difference in total protrusion density between genotypes (WT, 1.12±0.03 200 

spines/µm; KO, 1.07±0.03 spines/µm; n=45 dendrites per condition; P>0.05,   Student’s   t-test). 201 

The dendritic arborization of layer II/III neurons was also similar between hevin KO and WT 202 

mice, showing that lack of hevin does not lead to overt problems in dendritic morphology 203 

(Figure 5–figure supplement 1C). These results indicated that the astrocyte-secreted 204 

synaptogenic protein hevin is important for spine maturation in the cortex.  205 

To understand the role of hevin in dendritic spine maturation at ultra-high resolution, we next 206 

employed ssEM in littermate P25 WT and hevin KO mice (Kuwajima et al., 2013). Three-207 

dimensional (3D)-EM reconstructions, visualizing dendrites, spines and synapses, confirmed the 208 

structural immaturity of hevin KO dendrites (Figure 5A). Analysis of postsynaptic density (PSD) 209 

area revealed smaller, asymmetric (i.e. excitatory) synapse area in hevin KO V1 (Figure 5B), 210 

indicative of synaptic immaturity. Despite the deficits in synapse morphology, overall 211 

asymmetric synapse density was not significantly affected in hevin KO V1 (WT, 2.16±0.16 212 

synapses/µm; KO, 2.63±0.27 synapses/µm; n=12 dendrites per condition; P=0.15,  Student’s   t-213 

test). Since hevin is primarily expressed and secreted by astrocytes, we postulated that hevin 214 

KOs may have altered astroglial contact at synapses, but no difference in astrocyte contact was 215 

found between WT and hevin KO synapses (Figure 5C). Interestingly, a fraction of excitatory 216 



synapses in the hevin KOs was made directly onto the dendritic shafts rather than on spines 217 

(Figure 5D), a configuration that was rare in the WTs at P25. This observation reveals that hevin 218 

is required for the proper compartmentalization of excitatory synapses onto spines. Taken 219 

together, these findings show that hevin function is required for the proper maturation and 220 

localization of excitatory synapses in the cortex. 221 

Spines with Multiple Excitatory Contacts (SMECs) Represent a Stage in Excitatory Synaptic 222 

Maturation  223 

Our 3D analyses revealed that, in addition to the above-mentioned structural deficits in the 224 

excitatory synapses, a considerable number of dendritic spines receive more than one excitatory 225 

synapse in hevin KOs (Figure 5E). These SMECs (Spines with Multiple Excitatory Contacts) are 226 

distinctly different from branched spines, in which multiple spine heads are connected to the 227 

same spine neck (Kirov et al., 1999). Furthermore, SMECs should not be confused with 228 

multisynaptic boutons (MSBs), where a single presynaptic axonal bouton makes contact with 229 

multiple dendritic spines (Kirov et al., 1999). SMEC density was significantly higher in P25 230 

hevin KO mice compared to WT (Figure 5E).  231 

Because hevin KO dendrites displayed other signs of immaturity, we postulated that SMECs may 232 

represent an earlier stage in excitatory synapse maturation. To investigate if SMECs occur in the 233 

context of normal synaptic development, we created ssEM-derived 3D reconstructions of 234 

dendrites in the synaptic zone of WT V1 at P14, an age when dendritic spine structures are not 235 

yet fully mature. Electron micrographs revealed the existence of SMECs in P14 V1 in which a 236 

single postsynaptic spine contained more than one asymmetric PSD (Figure 6A). 3D 237 

reconstructions from ssEM confirmed that each PSD on a SMEC was contacted by a different 238 



presynaptic axon (Figure 6B). This ruled out SMECs as having either a single perforated PSD or 239 

multiple PSDs opposed to the same axon. Several configurations of SMECs were detected; some 240 

in which two axons synapsed on opposite sides of the same spine head (Figure 6B, left), and 241 

others with one PSD on the head and a second PSD on either the neck or base of the spine 242 

(Figure 6B, right). SMECs were primarily of the thin spine type, though we also found numerous 243 

examples of filopodia and mushroom SMECs. Remarkably, 25% of all excitatory connections 244 

are formed onto SMECs at P14, a finding that may have gone unnoticed if not for the spatial 245 

resolution offered by 3D ssEM. The prevalence of SMECs is largely decreased by P25 (Figure 246 

6C,D), indicating that SMECs represent a transient stage in excitatory synaptic maturation. 247 

SMECs are Targeted by Specific Axonal Populations 248 

SMECs are a transient structure observed during normal synaptic development, but what purpose 249 

do they serve? When multiple axons are contacting a single spine, they will have to share the 250 

postsynaptic machinery available within that spine. Such a configuration would potentially 251 

provide means to drive competition between neighboring inputs for postsynaptic resources, and 252 

the activity levels of the presynaptic axons contacting that spine could directly influence this 253 

competition. To determine whether specific axonal populations were contacting SMECs, we 254 

completed full 3D reconstructions of axons contacting SMECs in P25 hevin KOs and P14 and 255 

P25 WTs. We found that if an axon made a connection with a SMEC, it had nearly a 50% chance 256 

of contacting another SMEC nearby (42.5% in P14 WT, 45.4% in P25 WT, 41.6% in P25 hevin 257 

KO; Figure 7A, Video 1), which is vastly higher than what would be expected by chance (6.4% 258 

in P14 WT, 0.5% in P25 WT, 3.1% in P25 hevin KO). This specific preference of certain axons 259 

for SMECs suggested that SMECs are targeted by particular subpopulations of axons which may 260 

be in competition with their neighbors for common postsynaptic spines. 261 



We found that SMECs are still abundant in P25 hevin KOs (Figure 5E), and in hevin KOs the 262 

number of VGlut2 synapses are reduced whereas VGlut1 synapses are increased at this age 263 

(Figure 2B,C). Therefore, we postulated that SMECs may be sites for simultaneous innervation 264 

by VGlut1+ cortical axons and the VGlut2+ thalamic projections (Figure 2A). To provide 265 

evidence for this possibility, we next performed immuno-EM analysis using VGlut1 and VGlut2-266 

specific antibodies on conventional 2D-EM sections from P14 WT mice and observed that a 267 

SMEC can indeed receive simultaneous cortical (VGlut1+) and thalamic (VGlut2+) inputs 268 

(Figure 7B).   269 

It was previously shown that, during early cortical development, VGlut2+ thalamic inputs 270 

establish numerous contacts within the S/Z; however, as the cortex develops, the majority of 271 

these connections are pruned and VGlut1+ inputs dominate this region (Miyazaki et al., 2003). 272 

During this period, confocal microscopy images of VGlut1+ and VGlut2+ terminals first appear 273 

to frequently overlap, but this overlap resolves over time (Nakamura et al., 2007). Based on our 274 

findings, we postulated that the close positioning of VGlut1+ and VGlut2+ terminals at the same 275 

SMEC might yield an apparent co-localization between these two presynaptic markers in 276 

conventional light microscopy. If that is the case we expected hevin to affect the segregation of 277 

VGlut1 and VGlut2 terminals during cortical development. To test this possibility, we used IHC 278 

to compare the apparent co-localization of the two VGluts in the S/Z of V1 in WTs and hevin 279 

KOs at P15 and P25. We found that, in agreement with earlier findings from other brain regions 280 

and layers (Herzog et al., 2006; Nakamura et al., 2007), 10.97% percent of VGlut terminals 281 

appeared to co-localize in P15 WT, which was significantly reduced in P25 WT (Figure 8–figure 282 

supplement 1A,B). In hevin KOs, co-localization of VGlut1/VGlut2 was originally lower than 283 

WT at P15, perhaps due to the overall loss of VGlut2+ synapses. Interestingly, the frequency of 284 



overlap in the P25 hevin KO was essentially unchanged compared to P15 and was significantly 285 

higher than the P25 WT (Figure 8–figure supplement 1A,B). These results suggest that hevin is 286 

important for the resolution of the VGlut1/VGlut2 overlap (and, potentially, SMECs). Analysis 287 

of rotated images confirmed that the observed VGlut1/VGlut2 overlap by confocal microscopy is 288 

not due to random chance (Figure 8–figure supplement 1C). 289 

The VGlut1/VGlut2 overlap has previously been attributed to temporary co-expression of these 290 

proteins in the same synaptic terminals (Nakamura et al., 2007). To test if this co-localization is 291 

mainly due to the resolution limit of light microscopy rather than the expression of these two 292 

VGluts at the same terminal, we used high-resolution structured illumination microscopy (SIM) 293 

imaging of presynaptic puncta in the synaptic zones of P15 WT mice (since the VGlut1/2 294 

overlap is highest at this age). SIM uses constructive and deconstructive interference of 295 

excitation light at the focal plane of the objective to illuminate a sample with a series of 296 

sinusoidal stripes; from the resulting moiré fringes it is possible to generate super-resolution data 297 

and produce a minimum two-fold improvement in resolution over confocal microscopy 298 

(Schermelleh et al., 2010). Indeed, SIM imaging of VGlut1 and VGlut2 puncta in P15 WT 299 

showed virtually no co-localized presynaptic puncta (Figure 8–figure supplement 1D). By 300 

increasing the maximum distance with which to detect co-localized puncta, SIM analysis 301 

eventually reached a point at which VGlut1/VGlut2 overlap approached the level observed in 302 

P15 WT by confocal imaging; this occurred near the practical resolution of confocal microscopy 303 

(Figure 8–figure supplement 1E). This provided strong evidence that the overlap of 304 

VGlut1/VGlut2 puncta we observed with confocal microscopy (Figure 8–figure supplement 305 

1A,B) was due to adjacent presynaptic puncta rather than co-expression in the same terminal. 306 



Despite the knowledge that SMECs are increased in the hevin KO (Figure 5E) and can receive 307 

simultaneous VGlut1/VGlut2 synaptic inputs (Figure 7B), the vast majority of inputs to hevin 308 

KO cortex remain VGlut1-positive (Figure 2). Therefore, the possibility arises that most SMECs 309 

actually receive inputs from multiple intracortical axons, rather than existing as sites for 310 

simultaneous thalamic and cortical innervation. Taking advantage of the finding that co-localized 311 

VGlut/VGlut2 puncta in light microscopy is predominantly due to close expression by different 312 

presynaptic terminals (Figure 8–figure supplement 1D,E), we next imaged presynaptic puncta in 313 

close proximity to dendritic spines with confocal microscopy in order to quantify the types of 314 

inputs made onto SMECs. Using an in utero electroporation (IUE) approach at embryonic day 315 

15.5 (E15.5) we specifically labeled cortical layer II/III neurons with green fluorescent protein 316 

(GFP) (Figure 8–figure supplement 2A,B). We then harvested brains at specific developmental 317 

ages and co-stained for VGlut1 and VGlut2. S/Z dendrites and presynaptic puncta were imaged 318 

via confocal Z-stacks and reconstructed in 3D with the Imaris processing package (Figure 8–319 

figure supplement 2C,D). Presynaptic puncta in close proximity to the dendrite were identified 320 

using a Matlab algorithm embedded in Imaris (see Materials and Methods). This analysis method 321 

was first confirmed in P15 WT, an age when SMECs are still prevalent. Unisynaptic spines (i.e. 322 

spines contacting only 1 presynaptic puncta; either VGlut1 or VGlut2) and SMECs in various 323 

configurations were successfully detected (Figure 8–figure supplement 2D,E). In accordance 324 

with a role for SMECs in synaptic competition during development, the majority of SMECs were 325 

innervated by both VGlut1 and VGlut2 inputs at this age, with fewer examples of 326 

VGlut1/VGlut1 and VGlut2/VGlut2 SMECs (Figure 8–figure supplement 2E). 327 

Using the same parameters, we then quantified the difference in presynaptic innervation of 328 

SMECs between WT and hevin KO V1 at P21. In addition to confirming the overall increase in 329 



SMECs in the hevin KO, the 3D reconstructions revealed that the majority of these SMECs 330 

indeed received mixed VGlut1/VGlut2 inputs (Figure 8A,B), rather than having multiple VGlut1 331 

inputs as the overall presynaptic puncta density would suggest. Taken together, these findings 332 

reveal that SMECs are typically sites of contact by cortical and thalamic axons, potentially 333 

representing a novel paradigm for synaptic competition between these two main sources of 334 

presynaptic input onto cortical spines. Our results indicate that resolution of SMECs into single 335 

synapse spines is a developmental process that is regulated by astrocytes through secretion of 336 

hevin.  337 

 338 

  339 



Discussion 340 

Synaptic maturation and refinement, wherein appropriate synapses are strengthened while 341 

superfluous connections are eliminated, are critical for the establishment of functional neuronal 342 

circuitry. In the developing cortex, the process of refinement includes the resolution of synaptic 343 

competition between incoming thalamic projections and the resident intracortical axons. In the 344 

present study, we show that an astrocyte-secreted synaptogenic protein, hevin, is required for the 345 

connectivity of thalamocortical synapses. Furthermore, we found that thalamic and cortical 346 

axons simultaneously innervate dendritic spines, uncovering a potential role for spines as sites of 347 

synaptic competition. Based on our findings, we propose that, in the developing visual cortex, 348 

SMECs serve as sites at which cortical and thalamic inputs compete (Figure 8C). This 349 

competition is normally resolved by P25 with the establishment of single synapse spines 350 

contacting either VGlut1+ or VGlut2+ terminals. This resolution is dependent on astrocyte-351 

secreted hevin to stabilize VGlut2+ synapses. In the absence of hevin, the VGlut2+ connections 352 

cannot be stabilized thus cannot effectively compete with VGlut1+ terminals for postsynaptic 353 

spines, resulting in increased VGlut1+ synapses and the persistence of SMECs (Figure 8C). 354 

Since hevin is a synaptogenic protein, our initial findings showing no overall reduction in 355 

excitatory synaptic density in area V1 of hevin KO mice were surprising. However, this 356 

observation was explained by a severe and specific reduction of in the number of thalamocortical 357 

connections in hevin KOs, whereas the abundance of intracortical synapses was increased. These 358 

results reveal that during development the formation and stabilization of VGlut1+ intracortical 359 

and VGlut2+ thalamocortical synapses are differentially regulated. Our findings also suggest that 360 

the reduction in VGlut2+ synapses in hevin KO V1 enable synaptic takeover by the more 361 

abundant VGlut1+ projections. In agreement with this possibility, previous observations of 362 



synaptic competition have shown that retraction of one axon is often succeeded by the expansion 363 

of another (Walsh and Lichtman, 2003).  364 

The specificity of hevin for VGlut2+ synaptic stabilization raises the question of why we 365 

observed global structural immaturity of dendrites in hevin KO V1. During development, 366 

spontaneous retinal activity relayed by thalamus facilitates proper patterning and connectivity 367 

within visual cortex (Ackman and Crair, 2014). Furthermore, it was previously shown that 368 

perturbations in synaptic competition for eye-specific territories in V1 can compromise dendritic 369 

spine refinement (Mataga et al., 2004). Defective thalamocortical connectivity in hevin KO mice 370 

may therefore be responsible for driving generalized spine synapse immaturity in the cortex. In 371 

agreement with this possibility, we found that a hevin KOs had increased numbers of excitatory 372 

synapses made onto dendritic shafts. It is postulated that excitatory shaft synapses are among the 373 

first synapses to form along dendrites (Reilly et al., 2011). These shaft synapses may be induced 374 

to become spines by presynaptic activity during the early stages of postnatal development (P8-375 

P12) (Kwon and Sabatini, 2011); our results suggest that thalamocortical connectivity in general 376 

and/or hevin in particular may be playing a role in the shaft to spine transition of some synapses.  377 

Hevin has been known to modulate cell adhesion (Sullivan and Sage, 2004), and its positioning 378 

in the synaptic cleft (Lively et al., 2007) makes it a prime candidate for organizing and 379 

stabilizing pre- and postsynaptic cell adhesion molecules. Because hevin is preferentially 380 

inducing thalamocortical synapses, there may be specific hevin interactors present on these 381 

synapses that distinguish them from the intracortical ones.  Hevin  may  also  act  as  a  “protection  382 

signal”   (Sanes and Lichtman, 1999) to prevent elimination of thalamocortical synapses. 383 

Alternatively, hevin is a generalized protective signal but VGlut1+ intracortical synapses may 384 

have redundant stabilization/protection mechanisms in place that can compensate for the lack of 385 



hevin, whereas with no such compensation available the VGlut2+ thalamocortical population is 386 

lost. 387 

Our investigation of hevin KO cortex presents an interesting possibility that cortical and thalamic 388 

axons compete for postsynaptic targets at single dendritic spines. The presence of SMECs in the 389 

central nervous system was described a long time ago (Jones and Powell, (1969). Perhaps due to 390 

the difficulty of observing these synaptic structures, because of their unique geometrical 391 

arrangement, this early finding of SMECs was largely ignored and their purpose remained 392 

unknown.  Instead,  a  simple  “one  spine:  one  excitatory synapse”  view  of  connectivity  prevailed. 393 

The one spine: one synapse configuration provides a context in which spines can 394 

compartmentalize calcium and filter membrane potentials in an input-specific manner (Yuste, 395 

2013). Though important, these features of spines may not represent the full extent of their 396 

functions in the developing CNS.  397 

Our findings indicate that SMECs represent a stage in excitatory synaptic development. In 398 

agreement with this, multiply-innervated filopodia have been seen in the juvenile CA1 region of 399 

hippocampus (Fiala et al., 1998); these protrusions were proposed to “sample”  alternative  axonal  400 

partners during a highly active period of synaptogenesis. In addition, live imaging of green 401 

fluorescent protein (GFP)-labeled dendrites in acute hippocampal slices from P10-12 mice 402 

showed that spines sample nearby synaptic resources even after making a stable contact (Konur 403 

and Yuste, 2004). This sampling was proposed to trigger synaptic competition at individual 404 

spines. However, these experiments inferred the presence of axonal boutons from labeling of the 405 

presynaptic marker synaptophysin, raising the possibilities that this staining could have been the 406 

result of multiple presynaptic release sites (i.e. active zones) on the same synapse or even 407 

different boutons belonging to the same axon. By using ssEM-derived 3D reconstructions of 408 



synaptic structures, here we show that multiple independent axons compete for synaptic territory 409 

on single spines. Furthermore, our finding that SMECs are contacted by different axonal 410 

populations (i.e. VGlut1+ and VGlut2+) suggests that establishment of synaptic networks in the 411 

cortex depends on the outcome of synaptic competition at spines, demonstrating a dynamic new 412 

role for spines in synaptic development. 413 

In conclusion, here we show that the astrocyte-secreted hevin is required for the proper 414 

establishment of thalamocortical synapses. Moreover, this process occurs on spines serving as 415 

simultaneous contact sites for thalamic and cortical inputs during development, a finding that 416 

expands the current view of spines as input filters or calcium buffers. These results may also 417 

have important clinical implications. Hevin is strongly upregulated in reactive astrocytes in 418 

disease conditions (McKinnon and Margolskee, 1996) and has also been linked to neurological 419 

disorders, including; autism, schizophrenia, suicide and depression (Purcell et al., 2001; 420 

Jacquemont et al., 2006; Kahler et al., 2008; Vialou et al., 2010; Zhurov et al., 2012; De Rubeis 421 

et al., 2014). Abnormal spine maturation and connectivity have also been observed in these and 422 

other diseases (Fiala et al., 2002; De Rubeis et al., 2013; Kim et al., 2013), including the 423 

presence of SMEC-like   “giant   spines”   in   hippocampi   from  patients  with   severe   temporal   lobe  424 

epilepsy (Witcher et al., 2010). Future studies may determine if impaired resolution of axonal 425 

competition by astrocytes drives the dendritic spine deficiencies observed in these conditions, 426 

providing a novel cellular target for therapeutic strategies. 427 

  428 



Materials and Methods 429 

Immunohistochemistry and synaptic puncta analysis: 430 

For synaptic puncta analysis of mouse V1, hevin KO mice on a 129/Sve background and 431 

littermate age-matched WT controls were perfused intracardially with Tris-Buffered Saline 432 

(TBS, 25 mM Tris-base, 135 mM NaCl, 3 mM KCl, pH 7.6) supplemented with 7.5 µM heparin 433 

followed with 4% paraformaldehyde (PFA; Electron Microscopy Sciences, PA) in TBS. The 434 

brains were then removed and were fixed with 4% PFA in TBS at 4°C overnight. The brains 435 

were cryoprotected with 30% sucrose in TBS overnight and were then embedded in a 2:1 436 

mixture of 30% sucrose in TBS:OCT (Tissue-Tek, Sakura, Japan). Brains were cryosectioned 437 

(coronal) at 20 µm using Leica CM3050S (Leica, Germany). Sections were washed and 438 

permeabilized in TBS with 0.2% Triton-X 100 (TBST; Roche, Switzerland) 3 times at room 439 

temperature. Sections were blocked in 5% Normal Goat Serum (NGS) in TBST for 1 hour at 440 

room temperature. Primary antibodies (guinea pig anti-VGlut1 1:3500 (AB5905, Millipore, 441 

MA), guinea pig anti-VGlut2 1:7500 (135 404, Synaptic Systems, Germany), rabbit anti-442 

VGLUT2 1:750 (135 403, Synaptic Systems), rabbit anti-PSD95 1:300 (51-6900, Invitrogen, 443 

CA)) were diluted in 5% NGS containing TBST. Sections were incubated overnight at 4°C with 444 

primary antibodies.  Secondary Alexa-fluorophore conjugated antibodies (Invitrogen) were 445 

added (1:200 in TBST with 5% NGS) for 2 hours at room temperature.  Slides were mounted in 446 

Vectashield with DAPI (Vector Laboratories, CA) and images were acquired on a Leica SP5 447 

confocal laser-scanning microscope. 448 

3-5 animals/genotype/age were stained with pre- (VGlut1 or VGlut2) and post-synaptic (PSD95) 449 

marker pairs as described previously (Kucukdereli et al., 2011). Three independent coronal 450 



sections per each mouse, which contain the V1 visual cortex (Bregma -2.5 to -3.2 mm, Interaural 451 

1.3 to 0.6 mm (Franklin and Paxinos, 2001)) were used for analyses. 5 µm thick confocal z-452 

stacks (optical section depth 0.33µm, 15 sections/z-stack, imaged area/scan=20945 µm2) of the 453 

synaptic zone in area V1 were imaged at 63x magnification on a Leica SP5 confocal laser-454 

scanning microscope.  Maximum projections of 3 consecutive optical sections (corresponding to 455 

1µm total depth) were generated from the original z-stack. Analyses were performed blind as to 456 

genotype. The Puncta Analyzer plugin that was developed by Barry Wark (available 457 

Supplementary File 1) for ImageJ 1.29 (NIH; http://imagej.nih.gov/ij/, version ImageJ 1.29 is 458 

available at http://labs.cellbio.duke.edu/Eroglu/Eroglu_Lab/Publications.html) was used to count 459 

the number of co-localized, pre-, and post-synaptic puncta. This quantification method is based 460 

on the fact that pre- and post-synaptic proteins (such as VGluts and PSD95) are not within the 461 

same cellular compartments and would appear co-localized only at synapses due to their close 462 

proximity. Previous studies showed that this quantification method yields an accurate estimation 463 

of the number of synapses in vitro and in vivo which were previously confirmed by other 464 

methods such as EM and electrophysiology by us and others (Christopherson et al., 2005; Eroglu 465 

et al., 2009; Kucukdereli et al., 2011). Details of the quantification method have been described 466 

previously (Ippolito and Eroglu, 2010). Briefly, 1 µm thick maximum projections are separated 467 

into red and green channels, background subtracted (rolling ball radius=50), and thresholded in 468 

order to detect discrete puncta without introducing noise. The Puncta Analyzer plugin then uses 469 

an algorithm to detect the number of puncta that are in close alignment across the two channels, 470 

yielding quantified co-localized puncta. In order to calculate % of WT co-localization, co-471 

localized puncta values for WT were averaged, then all image values (WT and KO) were 472 

converted to % of the calculated WT average. 473 



For co-localization of VGlut1 and VGlut2, three P25 hevin KO mice on a 129/Sve background, 474 

three littermate P25 WT controls and three P15 WT controls were perfused, sectioned, stained 475 

and imaged as described previously for synaptic staining. Primary antibodies (guinea pig anti-476 

VGLUT1 1:3500 (AB5905, Millipore), rabbit anti-VGLUT2 1:750 (135 403, Synaptic Systems)) 477 

were diluted in 5% NGS containing TBST. 478 

For cell staining, three P25 WT mice and one Aldh1L1-eGFP mouse (in which astrocytes are 479 

labeled with eGFP; MMRRC, UC Davis, CA) were perfused and sectioned as described 480 

previously for synaptic staining. Sections containing Layer II/III of V1 visual cortex (Bregma -481 

2.5 to -3.2 mm, Interaural 1.3 to 0.6 mm (Franklin and Paxinos, 2001)) or dorsal LGN (Bregma -482 

1.7 to -2.9 mm, Interaural 2.1 to 0.9 mm (Franklin and Paxinos, 2001)) were washed and 483 

permeabilized in TBS with 0.2% Triton-X 100 (TBST; Roche) 3 times at room temperature.  484 

Sections were blocked in 5% Normal Donkey Serum (NDS) in TBST for 1 hour at room 485 

temperature. Primary antibodies (mouse anti-GFAP 1:1000 (G3893, Sigma, MO), mouse anti-486 

NeuN clone A60 1:1000 (MAB377, Millipore), rabbit anti-Iba1 1:500 (019-19741, Wako, 487 

Japan), goat anti-hevin (a.k.a. SPARCL1) 1:500 (AF2836, R&D Systems, MN)) were diluted in 488 

5% NDS containing TBST. Sections were incubated overnight at 4°C with primary antibodies.  489 

Secondary Alexa-fluorophore conjugated antibodies (Invitrogen) were added (1:200 in TBST 490 

with 5% NDS) for 2 hours at room temperature.  Slides were mounted in Vectashield with DAPI 491 

(Vector Laboratories) and images were acquired at 63x magnification on a Leica SP5 confocal 492 

laser-scanning microscope. 493 

Western blotting: 494 



WT mice were perfused with PBS intracardially to clear blood before the brains were removed. 495 

Cortex and hippocampus were dissected out and homogenized in ice-cold solubilization buffer 496 

(25 mM Tris pH 7.2, 150 mM NaCl, 1mM CaCl2, 1 mM MgCl2) containing 0.5% NP-40 497 

(Thermo Scientific, MA) and protease inhibitors (Roche). The protein concentrations of the 498 

lysates were determined using micro BCA protein assay kit (Pierce, IL). Samples for SDS-PAGE 499 

were prepared   at   1μg   protein/μL   concentration   using   5X  SDS-PAGE  buffer   (Pierce).   10μg   of  500 

protein was loaded into each well. Samples were resolved by SDS-PAGE on 4-15% 501 

polyacrylamide gels (BioRad, CA) and were transferred onto an Immobilon-FL PVDF 502 

membrane (Millipore). 503 

Blots were blocked in 50% fluorescent blocking buffer in PBS (MB-070, Rockland, PA) 504 

containing 0.01% Tween-20 for 1 hour at room temperature. Blots were then incubated with 505 

primary antibody dilutions in blocking buffer (goat anti-SPARCL1 1:2000 (AF2836, R&D 506 

Systems), rabbit anti-β-tubulin 1:1000 (926-42211, Li-Cor, NE)) overnight at 4°C. Fluorescently 507 

labeled secondary antibodies (Li-Cor) were diluted (1:5000) in the same buffer as primary 508 

antibodies and western blots were incubated with secondary antibodies for 2 hours at room 509 

temperature in the dark.  Detection was performed using the Li-Cor Odyssey System. 510 

Electrophysiology: 511 

Acute   coronal   slices   (350   μm   thick)   were   prepared   from   P23 to P26 Hevin-null animals and 512 

littermate wildtype controls. Mice were deeply anesthetized with tribromoethanol (Alfa Aesar, 513 

MA) and transcardially perfused with ice-cold high-sucrose artificial cerebrospinal fluid (ACSF) 514 

equilibrated with 95% O2 and 5% CO2 (carboxygenated). Brains were removed and sectioned in 515 

ice-cold sucrose ASCF on a Leica VT1200S. Slices recovered in carboxygenated standard ACSF 516 



at room temperature for a minimum of one hour. Whole-cell patch-clamp recordings of miniature 517 

excitatory postsynaptic currents (mEPSCs) were recorded at 30ᵒC in ACSF supplemented with 518 

tetrodotoxin (Tocris, UK) and picrotoxin (Sigma), with a continuous perfusion rate of 2-3 519 

ml/min. Membrane potential was held at -70 mV. Junction potential was uncorrected. Recording 520 

pipette internal solution (pH 7.2) contained (in mM): 103 CsOH, 103 D-gluconic acid, 2.8 NaCl, 521 

5 TEA-Cl, 20 HEPES, 0.2 EGTA, 5 Lidocaine N-ethyl chloride, 4 ATP-Mg, 0.3 GTP-Na, 10 522 

Na2Phosphocreatine, 0.025 Alexa 488 Hydrazide (Invitrogen) and approximately 10 K2S04 (to 523 

bring solution to 300 mOsm). 524 

Cells from Layer II/III of the visual cortex (30–80 microns ventral from the ventral border of 525 

Layer I) were visualized with a 40X water-immersion objective (LUMPlanFI, 40X / 0.80 water 526 

immersion) under an Olympus BX51WI microscope equipped with infrared differential 527 

interference contrast optics, reflected fluorescence system, and OLY-150 camera (Olympus, 528 

Japan). Signals were recorded using a MultiClamp 700B amplifier and DigiData 1322A 529 

(Molecular Devices, CA). Cells with capacitance of less than 100 picofarads were excluded to 530 

prevent inclusion of interneurons and pyramidal morphology was confirmed post-recording by 531 

visualizing the Alexa 488 dye. Pipette resistance ranged from 2.8 to 4.1 MΩ.   Signals   were  532 

collected at 10 kHz, unfiltered. Cells with poor technical quality of recordings were excluded 533 

from analysis based on predefined criteria of  >25  MΩ access resistance or >30% change in series 534 

resistance or >6 pA peak-to-peak noise. Miniature EPSC events were analyzed off-line using 535 

MiniAnalysis software (Synaptosoft, GA). 536 

Virus-assisted axonal projection tracing: 537 



P18 hevin KO and WT littermate mice were deeply anesthetized with intraperitoneal injection of 538 

ketamine (150 mg/kg)/xylazine (15 mg/kg). Using Nanoject (Drummond, PA), mice were 539 

stereotactically injected by 50nl of EF-1a promoter-driven Flex-AAV-GFP within the dLGN 540 

[AP: -2.0; ML: 2.0; DV: 2.3 from brain surface]. To visualize specific neurons in dLGN that are 541 

directly connected with visual cortex, 100nl of rabies virus glycoprotein-coated Lenti-FuGB2-542 

Cre (synapsin promoter) (Kato et al., 2011) was infected into the V1 region of visual cortex [AP: 543 

-3.5; ML: 2.5; DV: 0.3 from brain surface]. Two weeks after infection, brains were removed, 544 

postfixed overnight at 4°C, and then cryo-protected with 30% sucrose in TBS. Brains were cut 545 

into   50   μm   coronal sections by cryostat (Leica CM 3000). Sections were counterstained with 546 

DAPI (Sigma). After washing three times, the sections were coverslipped with FluorSave 547 

(CalBioChem, Merck, Germany) aqueous mounting medium. For the axonal fiber tracing, 548 

images were taken by tile scan imaging using LSM 710 confocal microscope (Zeiss, Germany) 549 

with a 10× objective under control of Zen software (Zeiss). 550 

Cortical/thalamic cell culture and synapse assay: 551 

Neurons from either cortex or thalamus were purified from P1 hevin KO pups by sequential 552 

immunopanning as follows: Following dissection, cortex/thalamus was digested for 30 minutes 553 

in papain (Worthington, NJ). Papain digestion was then inhibited in sequential low/high 554 

concentrations of ovomucoid inhibitor (Worthington) and the resultant digested tissue was 555 

passaged through a 20 µm Nitex mesh filter (Sefar, NY). The cell solutions then underwent 556 

negative immunopanning (to remove nontarget cells and debris) on 2x Bandeiraea Simplicifolia 557 

Lectin I-coated petri dishes (Vector Laboratories), AffiniPure goat-anti mouse IgG+IgM (H+L) 558 

(Jackson Immunoresearch Laboratories, PA) coated dish, and AffiniPure goat-anti rat IgG (H+L) 559 

(Jackson) coated dish. A round of positive panning, using rat anti-neural cell adhesion molecule 560 



L1 antibody, clone 324 (MAB5272, Millipore), was used to isolate neurons from other cell types 561 

(predominantly astrocytes) to greater than 95% purity. Cortical cells or mixed cortical/thalamic 562 

cells (1:1 ratio) were then cultured in serum-free medium containing BDNF, CNTF, and 563 

forskolin on laminin-coated coverslips as previously described (Christopherson et al., 2005; 564 

Kucukdereli et al., 2011). Recombinant hevin protein was purified as described previously 565 

(Kucukdereli et al., 2011). Neurons were cultured for 3 days, then were treated for 36 hours with 566 

AraC to kill any contaminating mitotic cells (i.e. astroglia), then were cultured with 90 nM hevin 567 

or hevin-free growth media for an additional 9 days. 568 

Synapse quantification of cortical/thalamic cultures follows the procedure outlined in 569 

Kucukdereli et al (2011) with the exception of the antibodies used: primary antibodies against 570 

VGlut1 (1:1000; guinea pig; Millipore), VGlut2 (1:500; rabbit; Synaptic Systems), and PSD95 571 

(1:500; mouse; Neuromab, CA); secondary antibodies consisted of Alexa-conjugated antibodies 572 

diluted 1:1000 in antibody buffer. Imaging was performed on the AxioImager M1 (Zeiss) at 63x 573 

magnification. Only cortical neurons were imaged and thalamic neurons were avoided for 574 

imaging by the appearance of bright VGlut2 staining within the cell soma. 575 

In vivo hevin injections: 576 

P13 hevin KO and WT littermate mice were deeply anesthetized with intraperitoneal injection of 577 

ketamine (150 mg/kg)/xylazine (15 mg/kg). With Nanoject, mice were stereotactically injected 578 

with  either  recombinant  hevin  protein  (200  ng  in  Dulbecco’s  PBS,  Gibco,  CA)  or  vehicle  control  579 

(DPBS; 100 nl) into layer II/III of area V1 [AP: -2.1; ML: 2.3; DV: 0.25 from brain surface]. 580 

After 3 days, pups were anesthetized with Avertin then perfused transcardially with TBS 581 

containing heparin followed by 4% PFA. Brains were harvested, post-fixed overnight in 4% 582 



PFA, then cryoprotected in 30% sucrose-TBS. Sections (20 µm) were cut on a cryostat (Leica) 583 

and stained for VGlut1/VGlut2/PSD95 as described above. Imaging was performed on a Leica 584 

SP5 confocal microscope in area V1 approximately 100 µm laterally to the site of injection.  585 

Golgi-cox staining, dendritic spine analysis and neuronal morphology: 586 

Golgi-cox staining was performed on hevin KO and littermate WT control mice (n=3 mice per 587 

genotype) as described in the FD Rapid GolgiStain Kit (FD NeuroTechnologies, MD). Dye-588 

impregnated brains were embedded in Tissue Freezing Medium (Triangle Biomedical, NC) and 589 

were rapidly frozen on ethanol pretreated with dry ice. Brains were cryosectioned coronally at 590 

100 µm thickness and mounted on gelatin-coated microscope slides (LabScientific, NJ). Sections 591 

were stained according to the directions provided by the manufacturer. 592 

Three independent coronal sections per each mouse, which contain the V1 visual cortex (Bregma 593 

-2.5 to -3.2 mm, Interaural 1.3 to 0.6 mm (Franklin and Paxinos, 2001)) were imaged. Layer 594 

II/III pyramidal neurons were identified by their distance from pia and their distinct 595 

morphologies. Secondary and tertiary dendrites of these neurons were selected for analysis. Z-596 

stacks of Golgi-stained dendrites (up to 80 microns total on z-axis; optical section thickness=0.5 597 

µm) were taken at 63x magnification on a Zeiss AxioImager M1. Series of TIFF files 598 

corresponding to each image stack were loaded into RECONSTRUCT software (Fiala, 2005) 599 

(freely available at http://synapses.clm.utexas.edu). For each series, 3x10 µm segments of 600 

dendrites were chosen for analysis. 15 dendrites were analyzed per animal making a total of 45 601 

dendrites per condition. Analyses were performed blind as to genotype. Dendritic spines were 602 

identified on the selected dendritic segments; more than 500 spines per genotype were analyzed. 603 

Spines were analyzed by the rapid Golgi analysis method described in Risher et al. (2014). 604 



Briefly, using  the  ‘Draw  Z-trace’  tool  in  RECONSTRUCT,  the  three-dimensional length of each 605 

spine (from the point where the spine neck contacted the dendritic shaft out to the tip of the spine 606 

head) was measured. Spine head width was measured by drawing a straight line across the widest 607 

point of each spine in a single image of the z-series. These measurements were exported to 608 

Microsoft Excel (Microsoft, WA), where a custom macro was used to classify spines based on 609 

the spine length, width, and length:width ratio measurements obtained in RECONSTRUCT. 610 

Spines were categorized based on the following hierarchical criteria: 1) Branched = more than 611 

one spine head attached to same spine neck; 2) Filopodium = length>2 µm; 3) Mushroom = 612 

width>0.6 µm; 4) Long thin = length>1 µm; 5) Thin = length:width ratio>1; 6) Stubby = 613 

length:width  ratio≤1.   614 

For quantification of neurite outgrowth and branching, 100 µm thick coronal Golgi-cox stained 615 

sections were visualized using a Zeiss AxioImager D2 microscope. A total of 24 V1 Layer 2-3 616 

neurons (4 neurons per animal, 3 animals per condition) were selected for dendritic tracing from 617 

P25 hevin null and littermate WT controls. Tracing was performed with Neurolucida tracing tool 618 

(MBF Bioscience, VT). Convex hull analysis was used to measure total dendritic length and 619 

area, while Sholl analysis was used to determine dendritic complexity/branching. All analyses 620 

were done with NeuroExplorer (MBF Bioscience) software.  621 

Serial section electron microscopy: 622 

For ssEM analysis of mouse V1, P14 WT controls, P25 hevin KO mice and their littermate P25 623 

WT controls (3 mice per genotype/age, all on a 129/Sve background) were first transcardially 624 

perfused with warm PBS solution to clear out blood cells, and then with warm (37°C) 2% PFA, 625 

2.5% glutaraldehyde (EMS), 2 mM CaCl2, and 4 mM MgCl2 in 0.1 M cacodylate buffer (EMS) 626 



(pH 7.4) under Tribromoethanol (Sigma) anesthesia. 400 µm thick coronal sections per each 627 

mouse, which contain the V1 visual cortex (Bregma -2.5 to -3.2 mm, Interaural 1.3 to 0.6 mm 628 

(Franklin and Paxinos, 2001)) were cut with a tissue chopper (Stoelting, IL) and area V1 was 629 

dissected out with a #11 scalpel blade. V1 slices were immersed in 2% glutaraldehyde, 2 mM 630 

CaCl2, and 4 mM MgCl2 in 0.1 M cacodylate buffer (pH 7.4) and fixed overnight at 4°C. At the 631 

Duke Electron Microscopy Service core facility, slices were rinsed 3x5 min in 0.1 M phosphate 632 

buffer (PB) and postfixed in 1% OsO4 (Sigma) while heating in a microwave (2 min on, 2 min 633 

off, then 2 min on at 70% power with vacuum). After rinsing 2x5 min with 0.1M PB, they were 634 

dehydrated in ethanol/acetone series enhanced with 40 s of microwave processing. They were 635 

next incubated in 50:50 acetone:epoxy overnight at room temperature. After 2 changes of 636 

straight epon 3x3 min in the microwave, slices were left to stand for 30 min and then embedded 637 

in 100% epon resin at 60°C for 48 h. Ultrathin serial sections (45-50 nm) were cut from a small 638 

trapezoid positioned 50-100 µm below the pial surface corresponding to the synaptic zone (a.k.a. 639 

layer I) which contain the dendrites of layer II/III neurons. Serial sectioning, processing and 640 

photography were carried out by the Electron Microscopy Core at Georgia Regents University, 641 

following a protocol adapted from Harris et al. (2006). 642 

Series consisting of 100-150 consecutive micrographs each were blinded as to condition prior to 643 

analysis. Serial sections were aligned and synaptic structures were traced using 644 

RECONSTRUCT software. Section thickness was calculated with the cylindrical diameters 645 

method (Fiala and Harris, 2001). Dendrites were chosen for analysis on the basis of 1) spanning 646 

at least 75 consecutive serial sections, 2) measuring between 0.4-0.8 µm in diameter in cross-647 

section (to exclude large, apical dendrites and only include secondary and tertiary dendrites) and 648 

3) having at least 1 spine (to exclude aspinous dendrites from interneurons). PSD area was 649 



calculated by multiplying the two-dimensional length on each section by average section 650 

thickness and the total number of sections on which the PSD appears. 651 

Immuno-labeling electron microscopy: 652 

For immuno-EM analysis of mouse V1, 3 P14 WT mice on a 129/Sve background were 653 

transcardially perfused with warm (37°C) 4% PFA, 0.2% glutaraldehyde, 2 mM CaCl2, and 4 654 

mM MgSO4 in 0.1 M cacodylate buffer (pH 7.4) under Tribromoethanol anesthesia. 100 µm 655 

thick coronal sections per each mouse, which contain the V1 visual cortex (Bregma -2.5 to -3.2 656 

mm, Interaural 1.3 to 0.6 mm (Franklin and Paxinos, 2001)) were cut with a vibratome (Leica) 657 

and immersed in the perfusion fixative at 4°C.  658 

At the Electron Microscopy Core at Georgia Regents University, slices were rinsed 3x5 min in 659 

Hepes buffered saline (HBS). Non-specific binding sites were permeablilized and blocked for 30 660 

min with HBS, 10% BSA (Sigma), and 0.025% Triton X-100 (Sigma). Permeabilization solution 661 

was replaced with ice-cold guinea pig anti-VGlut1 1:750 (Millipore) in HBS plus 1% BSA and 662 

0.0025% Triton X-100, and slices were incubated at 4°C overnight on a shaker. After washing 663 

3x5 min in HBS-0.05% BSA, slices were incubated in anti-guinea pig Nanogold 1:250 664 

(Nanoprobes, NY) at 4°C overnight on a shaker. Slices were washed 3x5 min in HBS-0.05% 665 

BSA, then four changes of distilled H2O for 2 hours, then incubated for 2 hours on a shaker in 666 

0.5 mL of GoldEnhance EM (Nanoprobes) mixed according  to  manufacturer’s  directions.  Slices  667 

were washed thoroughly in ice-cold H2O to stop the gold enhancement. After washing 2x5 min 668 

in HBS, slices were incubated in rat anti-VGlut2 1:250 (MabTechnologies, Inc., GA) in HBS 669 

plus 1% BSA and 0.00025% Triton X-100 at 4°C overnight on a shaker. After washing 3x5 min 670 

in HBS-0.05% BSA, slices were incubated in anti-rat Nanogold 1:250 (Nanoprobes) at 4°C 671 



overnight on a shaker. Slices were washed 3x5 min in HBS-0.05% BSA, then fixed at room 672 

temperature in perfusion fixative for 20 min. After four changes of distilled H2O for 2 hours, 673 

slices were incubated for 3 hours on a shaker in 0.5 mL of GoldEnhance EM solution. Slices 674 

were washed thoroughly in ice-cold H2O to stop the gold enhancement, washed 2x5 min in HBS, 675 

then washed 3x5 min in 0.1 M cacodylate buffer in preparation for processing and embedding. 676 

Slices were post-fixed in 1% OsO4 plus 1/5% potassium ferrocyanide in cacodylate buffer for 1 677 

hour. Slices were washed 3x10 min in cacodylate buffer, post-fixed for 1 hour in 1% OsO4 in 678 

cacodylate buffer, then washed 3x10 min in distilled H2O. Slices were stained in 2% aqueous 679 

uranyl acetate on a shaker at room temperature for 1 hour, then washed 3x5 min in distilled H2O. 680 

They were then dehydrated in an ascending ethanol series (50%, 70%, 90% and 100%) for 5-10 681 

min each, with 100% repeated 3x10 min. Slices went through 2x10 min changes of propylene 682 

oxide, were placed in a 1:1 mixture of propylene oxide: Embed 812 resin mixture (EMS) for 1 683 

hour, then put in 100% Embed 812 overnight on a rotator. Slices were flat embedded so that the 684 

plane  of  sectioning  was  perpendicular  to  the  slice’s  surface,  polymerized  at  60°C  for  24  hours. 685 

Thin sections were cut with a diamond knife on a Leica EM UC6 ultramicrotome, collected on 686 

copper grids and stained with lead citrate. Sections were observed in a JEM 1230 transmission 687 

electron microscope (JEOL, Japan) at 110 kV. Areas positioned 50-100 µm below the pial 688 

surface corresponding to the synaptic zone (a.k.a. layer I), containing the dendrites of layer II/III 689 

neurons, were imaged with an UltraScan 4000 CCD camera and First Light Digital Camera 690 

Controller (Gatan Inc., PA). 691 

Structured Illumination Microscopy (SIM): 692 



WT brains were harvested and cryoprotected at P15 following 4% PFA fixation. Sections (20 693 

µm) were cut on a cryostat (Leica) and stained for IHC using primary antibodies against VGlut1 694 

(1:500; guinea pig; Millipore) and VGlut2 (1:750; rabbit; Synaptic Systems) followed by Alexa-695 

conjugated secondary antibodies. Sections were imaged using a Zeiss ELYRA PS1 microscope. 696 

3D structured illumination images of the S/Z of V1 were captured and images subsequently 697 

processed using Zeiss SIM algorithms.  698 

To quantify co-localized VGlut1 and VGlut2 puncta, SIM-processed image files were opened in 699 

Imaris (Bitplane, Switzerland) and spot channels generated for the synaptic markers using 700 

dimensions determined empirically from averaged measurements. Matlab (Mathworks, MA) was 701 

subsequently used to only show those puncta within 100 nm, 200 nm, or 300 nm of one another. 702 

In Utero Electroporation (IUE) and 3D analysis of confocally-imaged synaptic structures: 703 

Timed pregnant wild type WT (CD1, Charles River, MA) and hevin KO (129/Sve) dams were 704 

utilized for IUE. All electroporations were performed at embryonic day (E) 15.5 in order to 705 

target neocortical layer 2/3 pyramidal neurons. Dams were sedated with continuously vaporized 706 

isofluorane and cesarean sectioned to expose both uterine horns. 1 μg   of   DNA   plasmid  707 

containing shControl-CAG-EGFP with loading dye was injected into one lateral ventricle of each 708 

embryo using a pulled glass pipette. Five 50 ms pulses of 50 V spaced 950 ms apart were applied 709 

with tweezertrodes (positive paddle against the skull over the injection site, the negative paddle 710 

across the body away from the placenta) using the BTX ECM 830 (Harvard Apparatus, MA). 711 

Warm PBS was applied to embryos and dam to prevent drying. Following the electroporation, 712 

the uterine horns were returned to the abdominal cavity and the peritoneum, anterior muscle, and 713 

skin were sutured separately. The dam was then placed on a heating pad to recover and 714 



monitored daily following the surgery. All procedures for animal surgery and maintenance were 715 

performed in accordance with Duke Institutional Animal Care and Use Committee. 716 

Electroporated brains were harvested and cryoprotected at P21 following 4% PFA fixation. 717 

Sections (40 µm) were cut on a cryostat (Leica) and stained for IHC using primary antibodies 718 

against GFP (1:750; chicken; Millipore), VGlut1 (1:500; guinea pig; Millipore), and VGlut2 719 

(1:750; rabbit; Synaptic Systems) followed by Alexa-conjugated secondary antibodies. GFP- 720 

expressing secondary/tertiary dendrites in the S/Z, along with surrounding VGlut1/2 presynaptic 721 

puncta, were imaged on a Zeiss 780 inverted confocal microscope at 63x with 8x optical zoom at 722 

0.13 µm optical section thickness. Z-stacks were deconvolved with Huygens image processing 723 

software (Scientific Volume Imaging, The Netherlands) and then imported into Imaris for 724 

analysis. 725 

In Imaris, dendrites were reconstructed in 3D using either the Surfaces or FilamentTracer tool. 726 

Discrete VGlut puncta were resolved with the Spots tool. Presynaptic puncta within 0.2 µm of 727 

dendrites were then isolated using the Find Spots Close to Filament/Surface Matlab algorithm. 728 

Spines were then quantified by eye on the basis of their associated presynaptic partners, with the 729 

analyst blinded as to the genotype. 730 

Statistics: 731 

Statistica (StatSoft, OK) was used for all statistical analyses. Variability between different IHC 732 

synaptic staining pairs was controlled for by the use of nested design hierarchical ANOVAs 733 

(under Generalized Linear Models in Statistica) with experimental pair nested within condition. 734 

Graphical data are presented as mean ± s.e.m. 735 

  736 
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Figure 1 Hevin expression by astrocytes is developmentally regulated in the cortex. (A) 758 

Representative Western blots showing the developmental timeline for hevin expression in mouse 759 

cortex and hippocampus (tubulin was used as a loading control). (B) Quantification of Western 760 

blot analysis of hevin expression shows high expression between P15-P25. Data is presented as 761 

fold change compared to P1 levels (n=3 animals per age; P<0.05; one-way ANOVA with 762 

Dunnett’s  post  hoc  test).   (C)  Schematic  diagram  of  a  coronal  slice   through  mouse  brain  shows 763 

the synaptic zone of primary visual cortex (V1) where EM, IHC and Golgi-cox staining analyses 764 

were performed. Layer II/III neurons of the visual cortex heavily project their dendrites to this 765 

region (D) IHC staining reveals that hevin expression (green) overlaps with all astrocytes (left, 766 

arrow) and a small subset of neurons (middle, asterisk) in V1, with no overlap seen with 767 

microglia (right, arrowhead). Cell-specific markers in red: Aldh1L1-EGFP for astrocytes, NeuN 768 

for neurons, Iba1 for microglia. Scale bar, 50 µm. (E) The rarely occurring GFAP+ astrocytes 769 

(red) in healthy visual cortex also express hevin (green). Scale bar, 10 µm. 770 

 771 

Figure 2 Hevin is required for proper thalamocortical innervation of V1. (A) Schematic of 772 

synaptic input to area V1. Most inputs are intracortical (green) and contain primarily VGlut1. 773 

The thalamus sends VGlut2+ projections (red) to various layers of V1 (primarily Layer IV). 774 

Competition occurs between VGlut1+ and VGlut2+ terminals for the same postsynaptic targets. 775 

(B) Co-localization of VGlut1 (green) and PSD95 (magenta) revealed an increase in intracortical 776 

synapses (co-localized puncta; arrows) in the synaptic zone of P25 hevin KO V1 (n=3 z-stacks 777 

per animal, 5 animals per genotype; P<0.05, nested ANOVA). Scale bar, 5 µm. (C) VGlut2 (red) 778 

and PSD95 (cyan) co-localization (arrows), representing thalamocortical synapses, was 779 



significantly decreased in P25 hevin KO compared to P25 WT (n=3 z-stacks per animal, 4 780 

animals per genotype; P<0.05, nested ANOVA). Scale bar, 5 µm. 781 

 782 

Figure 2-figure supplement 1 Co-localized synaptic puncta are not due to random chance 783 

resulting from dense synaptic staining. Confocal Z-stacks were split into two channels (pre- and 784 

postsynaptic), the presynaptic channel was rotated 90 degrees out of alignment, then the two 785 

channels were re-merged and analyzed for co-localized synaptic puncta. For both VGlut1/PSD95 786 

(left) and VGlut2/PSD95 (right) co-localized puncta, puncta density was significantly decreased 787 

in the rotated image (red) compared to the original unrotated image (black) for both the WT and 788 

hevin KO (n=3 z-stacks per animal, 4 animals per genotype; P<0.01,  Student’s  t-test).  789 

 790 

Figure 2-figure supplement 2 Deficient thalamocortical connectivity in hevin KO is not 791 

due to decreased cortical neuron density. (A) Left: V1 stained for neuronal marker NeuN (red) 792 

and DAPI (green) revealed no differences in the gross morphology of cortical layers between 793 

P25 WT and hevin KO. Scale bar, 50 µm. Right: Quantification of neuronal density showed no 794 

significant differences throughout the cortices of P25 WT vs. Hevin KO (n=3 sections per 795 

animal, 3 animals per genotype; P>0.05, ANCOVA). (B) Top: Staining for VGlut2+ thalamic 796 

projections showed decreased intensity across multiple cortical layers, including S/Z, Layer II/III 797 

and Layer IV in hevin KO V1. White *=pial surface. Scale bar, 50 µm. Bottom: Quantification 798 

of VGlut2 pixel intensity for P25 WT and hevin KO across cortical layers I-IV (*P<0.05, 799 

ANCOVA).  800 

 801 



Figure 2-figure supplement 3 Reduced thalamocortical synapse density in hevin KO V1 802 

is not due to deficient geniculocortical connectivity. (A) Left: Schematic diagram of a coronal 803 

slice through mouse brain highlights the dorsal lateral geniculate nucleus (dLGN) which sends 804 

VGlut2+ projections to V1. Right: NeuN (red) staining reveals no difference in neuronal density 805 

between P25 WT and hevin KO dLGN (n=3-4 slices per animal, 3 animals per genotype; 806 

P=0.94,   Student’s   t-test). Scale bar, 50 µm. (B) Left: Diagram of the AAV-FLEX-GFP viral 807 

vector. The portion of the vector encoding for GFP is inverted, preventing its expression. Upon 808 

Cre recombination, the flanking lox sites are excised and the GFP region is flipped, resulting in 809 

GFP expression. Right: The AAV-FLEX-GFP virus (green) was injected into the dLGN to label 810 

projection neurons. Rabies virus glycoprotein-coated Lenti-FuGB2-Cre (brown) was injected 811 

into V1 that retrogradely transports Cre recombinase expression to the dLGN. In this dual-812 

injection system, only neuronal projections that originate in dLGN and terminate in V1 undergo 813 

Cre recombination and thereby express GFP. (C) Representative images showing GFP+ 814 

projection neurons in the dLGN of both the WT and hevin KO at P30 (approximately 12 days 815 

after viral injection). (D) Images of GFP+ projections in the S/Z of both WT and hevin KO show 816 

that lack of hevin does not impair the ability of thalamic axons to reach their target regions. Scale 817 

bars: 1 mm (main images); 40 µm (insets). 818 

 819 

Figure 2-figure supplement 4 Electrophysiological analysis of V1 cortical neurons in 820 

hevin KO. (A) Representative traces from mEPSC recordings in Layer II/III neurons of V1 from 821 

WT and hevin KO. Scale bars: 20 pA and 100 ms. (B) Amplitude of mEPSC was not 822 

significantly different in P25 hevin KO mice compared to age-matched WT (n=13 cells from 3 823 

WT mice, 18 cells from 5 hevin KO mice;;  P>0.05,  Student’s  t-test). (C) Frequency of mEPSC 824 



was not significantly different in P25 hevin KO mice compared to age-matched WT (n=13 cells 825 

from 3 WT mice, 18 cells from 5 hevin KO mice; P>0.05, Mann-Whitney U test).  826 

 827 

Figure 3 Hevin is important for both the formation and long-term maintenance of 828 

thalamocortical synapses. (A) Timeline of cortical synaptic development in mice. Axonal 829 

projections from the LGN reach their target areas in V1 shortly after birth. Around the time of 830 

eye opening, there is a period of intense synapse formation that gradually gives way to processes 831 

involved in synapse maturation and refinement, including synapse elimination. Multiple critical 832 

periods for different forms of plasticity in the visual system occur during this period of synapse 833 

formation and refinement. (B) At P7, the beginning of the synaptogenic period, co-localization of 834 

VGlut1 (green) and PSD95 (magenta) revealed a trend towards an increase in intracortical 835 

synapses (co-localized puncta; arrows) in the synaptic zone of hevin KO V1 (n=3 z-stacks per 836 

animal, 3 animals per genotype; P=0.082, nested ANOVA). (C) VGlut2 (red) and PSD95 (cyan) 837 

co-localization (arrows), representing thalamocortical synapses, was significantly decreased in 838 

P7 hevin KO compared to P7 WT (n=3 z-stacks per animal, 3 animals per genotype; P<0.05, 839 

nested ANOVA). Scale bars, 5 µm. (D) In the mature brain (12-weeks-old), hevin KO mice no 840 

longer have a discrepancy in VGlut1/PSD95 synaptic puncta when compared to WT (n=3 z-841 

stacks per animal, 5 animals per genotype; P>0.05, Student’s   t-test). (E) Deficient 842 

VGlut2/PSD95 synapse formation is still present in the mature hevin KO brains (n=3 z-stacks 843 

per animal, 5 animals per genotype; P<0.01, Student’s  t-test). Scale bars, 5 µm. 844 

 845 



Figure 4 Hevin specifically induces thalamocortical synapse formation in vitro (A-E) and 846 

in vivo (F-G). (A) Schematic of the cortical/thalamic neuron co-culture system. (B) 847 

Representative images of cortical neurons cultured for 14 days in vitro (DIV), either alone or in 848 

equal densities with thalamic neurons, with or without hevin treatment. Insets show individual 849 

channels for VGlut1 (green) and PSD95 (red) staining, as well as the merged image. Co-850 

localized puncta (yellow, arrows) represent synapses. Scale bars: 10 µm (main image), 5 µm 851 

(inset). (C) Hevin did not induce VGlut1 synapse formation onto cortical neurons, with or 852 

without  thalamic  neurons  also  present  (n=30  cells  per  condition;;  P>0.05,  Student’s  t-test between 853 

GM and hevin treatments). (D) Same as B, except VGlut2 now appears in the green channel. (E) 854 

Hevin strongly induces VGlut2/PSD95 synapse formation when cortical neurons are cultured 855 

together  with  thalamic  neurons  (n=30  cells  per  condition;;  *P>0.01,  Student’s  t-test between GM 856 

and hevin treatments). Upon hevin treatment VGlut2/PSD95 synapses are recruited heavily to 857 

neuronal soma and proximal dendrites. (F) Hevin protein was stereotactically injected directly 858 

into Layer II/III of hevin KO V1. When compared to vehicle-injected control, hevin-injected 859 

cortex had distinctly thickened VGlut2 staining throughout S/Z and upper II/III (asterisk), as well 860 

as a dense appearance of VGlut2+ axon tracks throughout II/III (arrow). Scale bar, 100 µm. (G) 861 

Hevin-injected V1 had more VGlut2/PSD95 co-localized puncta (arrowheads) than vehicle-862 

injected controls. Scale bar, 5 µm. (H) Hevin injection significantly increased the number of 863 

VGlut2/PSD95 synapses in hevin KO cortex (n=2 z-stacks per animal, 3 animals per treatment; 864 

P<0.01,  Student’s  t-test). 865 

 866 

Figure 4-figure supplement 1 Hevin does not induce intracortical synapse formation in 867 

vivo. Top: Synaptic staining in V1 does not show a difference in VGlut1/PSD95 co-localization 868 



(arrowheads) between hevin-injected brains and vehicle-injected controls. Scale bar, 5 µm. 869 

Bottom: Quantification of VGlut1/PSD95 synapses in hevin-injected cortex confirms that hevin 870 

does not increase the number of VGlut1+ synapses (n=2 z-stacks per animal, 3 animals per 871 

treatment;;  P>0.05,  Student’s  t-test). 872 

 873 

Figure 5 Hevin is required for dendritic maturation and proper localization of excitatory 874 

synapses. (A) Example 3D reconstructions of dendrites in P25 WT (left, blue) and hevin KO 875 

(right, pink) V1. Asymmetric PSD locations (i.e. excitatory synapses) are shown in red. Scale 876 

cubes, 0.5 µm3. (B) Asymmetric PSD size was decreased in P25 hevin KO versus WT (n=278 877 

WT synapses, 293 KO synapses; P<0.025, Kolmogorov-Smirnov two-sample test). (C) Left: EM 878 

examples   from   P25   WT   and   P25   hevin   KO   show   the   “tripartite   synapse”   arrangement   of  879 

postsynaptic dendritic spines (yellow), presynaptic axonal boutons (green) and glial processes 880 

(blue). Scale bar, 250 nm. Right: Quantification revealed no difference in the percentage of 881 

excitatory synapses contacted by glial processes in P25 WT versus P25 hevin KO (n=4 dendrites 882 

per   animal,   2   animals   per   genotype;;   P=0.52,   Student’s   t-test). (D) Left: Excitatory synapses, 883 

made by axons (green) onto dendritic spines (yellow) in P25 WT, were readily seen on dendritic 884 

shafts (yellow) in the hevin KO. Scale bar, 250 nm. Right, Top: Example hevin KO dendrite with 885 

multiple excitatory shaft synapses (arrows). Scale cube, 0.5 µm3. Right, Bottom: Quantification 886 

of excitatory shaft synapse density in P25 hevin KO compared to P25 WT (n=4 dendrites per 887 

animal,  3  animals  per  genotype;;  P<0.01,  Student’s   t-test). (E) SMEC density was increased in 888 

P25 hevin KO compared to WT (arrows indicate excitatory PSDs on SMECs; n=4 dendrites per 889 

animal, 3 animals per genotype; P<0.01, one-way  ANOVA  with  Fisher’s  LSD  posthoc  test). 890 



 891 

Figure 5-figure supplement 1 Structural immaturity across multiple spine types in hevin 892 

KO V1. (A) Multiple spine types can be found in developing visual cortex, progressing in 893 

maturity from the long, thin filopodia-type protrusions to the enlarged-head mushroom spines 894 

(and occasional branched spines). (B) Top: Golgi-cox stained secondary dendrites from Layer 895 

II/III pyramidal neurons in V1. Scale bar, 5 µm. Immature filopodia-like spines were frequent in 896 

hevin KOs (red arrowheads) whereas mature mushroom spines (blue arrows) were seen in P25 897 

WT. Bottom: Quantification of spine type densities revealed that immature spine types, including 898 

filopodia and long thin spines, were more frequent in the P25 hevin KO compared to WT. More 899 

intermediate-to-mature spine types, including short thin, stubby and mushroom, were less 900 

frequent in the P25 hevin KO compared to WT (n=15 dendrites per animal, 3 animals per 901 

genotype;;  P<0.01,  Student’s  t-test). (C) Top: Camera lucida images of representative Layer II/III 902 

pyramidal neurons in V1 from P25 WT and hevin KO. Bottom: Scholl analysis (P=0.70) and 903 

neurite outgrowth (P=0.26) analyses of Golgi-cox stained pyramidal neurons showed no 904 

significant differences between P25 WT and hevin KO (n=4 neurons per animal, 3 animals per 905 

genotype; ANCOVA).  906 

 907 

Figure 6 Spines with Multiple Excitatory Contacts (SMECs) represent a developmental 908 

stage in the maturation of dendritic spine structures. (A) Electron micrograph of a SMEC: a 909 

dendritic mushroom spine (yellow) making asymmetric contacts (red; arrows) with two different 910 

axonal boutons (green). Scale bar, 0.5 µm. (B) Different spatial arrangements observed in 911 

SMECs. Small green circles denote the location of glutamatergic vesicles within the axons. (C) 912 



SMECs (arrows) decrease from P14 to P25 in WT. (D) Quantification of the percentage of 913 

excitatory synapses made onto SMECs in P14 WT and P25 WT mice (n=4 dendrites per animal, 914 

3 animals per age; P<0.05, one-way  ANOVA  with  Fisher’s  LSD  posthoc  test). 915 

 916 

Figure 7 SMECs represent potential sites for competition between thalamocortical and 917 

intracortical projections. (A) Reconstructed axon (green) from P25 hevin KO contacting multiple 918 

SMECs on two different dendrites. Quantification revealed that axons that synapsed with at least 919 

one SMEC also synapsed with another SMEC roughly 50% of the time. Scale cube, 0.5 µm3. i-ii, 920 

Zoomed-in images reveal that each SMEC makes an excitatory synapse (red; arrow) with the 921 

reconstructed axon as well as a second excitatory synapse (yellow; arrowhead) with an additional 922 

axon (not shown). (B) Immuno-EM image from V1 in P14 WT showing a SMEC simultaneously 923 

contacting a VGlut1+ (green) and VGlut2+ (red) axonal bouton. Higher magnification images 924 

(below) highlight the size difference between the small VGlut1 (green arrowheads) and large 925 

VGlut2 (red arrowheads) Nanogold particles. Scale bar, 250 nm. 926 

 927 

Figure 8 Hevin is critical for the resolution of VGlut1/VGlut2-innervated SMECs. (A) 928 

Representative Imaris 3D reconstructions of GFP-labeled dendrites (blue) in the S/Z of P21 WT 929 

and   hevin   KO   V1.   Presynaptic   puncta   are   rendered   as   elliptical   ‘spots’   (green=VGlut1;;  930 

red=VGlut2). Numerous unisynaptic spines can be seen in the WT (arrow=VGlut1 spine; 931 

arrowheads=VGlut2 spines). In hevin KO, a SMEC can be seen contacting both a VGlut1 and 932 

VGlut2  ‘spot’  (asterisk).  A  unisynaptic  VGlut1  spine  (arrow)  is  also  present.  Scale  bar,  0.5  µm.  933 

(B) Quantification of SMEC density at P21 shows that the increase in total SMECs in the hevin 934 



KO is driven by the VGlut1/VGlut2 SMEC subtype (3 animals/genotype, n=15 dendrites per 935 

condition;;   P<0.01,   Student’s   t-test). (C) Model for astrocytic control of thalamocortical 936 

connectivity by hevin. Left: In early V1 synaptic development, intracortical (primarily VGlut1, 937 

or VG1) axons compete with thalamocortical (primarily VGlut2, or VG2) axons for synapses, 938 

occasionally forming synapses on the same dendritic spine (resulting in a SMEC). In the WT, 939 

astrocytes secrete hevin which stabilizes VGlut2+ synapses, resulting in discrete populations of 940 

VGlut1+ and VGlut2+ unisynaptic spines. In the hevin KO, VGlut2+ synapses cannot be 941 

properly stabilized. These sites either remain in competition with VGlut1, explaining the 942 

persistence of SMECs in hevin KO, or become lost, resulting in more VGlut1+ synapses overall. 943 

 944 

Figure 8-figure supplement 1 Overlap of VGlut1 and VGlut2 in light microscopy is due 945 

to close proximity of different presynaptic terminals. (A) Apparent overlap between VGlut1 946 

(green) and VGlut2 (red) by light microscopy appears as yellow puncta (arrows). Representative 947 

images show relative puncta density at P15 and P25 in both WT and hevin KO. Scale bar, 5 µm. 948 

(B) Quantification of the apparent overlap in VGlut1/VGlut2 puncta, which is decreased between 949 

P15 and P25 in the WT. In the hevin KO, the VGlut1/VGlut2 overlap is slightly decreased at P15 950 

but is unchanged as development continues to P25, at which point it is significantly higher than 951 

WT (n=3 z-stacks per animal, 3-4 animals per genotype; *P<0.01, **P<0.05, nested ANOVA). 952 

(C) To show that the apparent overlap in VGlut1 and VGlut2 puncta was not due to random 953 

chance in densely stained tissue, confocal Z-stacks were split into two channels (VGlut1 and 954 

VGlut2), the VGlut2 channel was rotated 90 degrees out of alignment, then the two channels 955 

were re-merged and analyzed for apparent co-localization of presynaptic puncta. For all 956 

conditions analyzed, overlap frequency was significantly decreased in the rotated image (red) 957 



compared to the original unrotated image (black) (n=3 z-stacks per animal, 3-4 animals per 958 

genotype;;   P<0.01,   Student’s   t-test). (D) Representative SIM image of VGlut1 (green)/VGlut2 959 

(red)-stained S/Z in P15 WT cortex. At the high resolution afforded by SIM (~100 nm), VGlut1 960 

and VGlut2 presynaptic puncta do not appear co-localized. Scale bar, 5 µm. (E) Scatterplot 961 

showing the apparent overlap in VGlut1/VGlut2 puncta at differing co-localization distance 962 

thresholds. When the limit of co-localization is 100 nm between puncta, approaching the 963 

resolution of SIM, virtually no co-localization is detected. By increasing the allowable distance 964 

between co-localized puncta (closer to the resolution of confocal microscopy), VGlut1/VGlut2 965 

overlap frequency eventually approaches the levels previously detected by confocal imaging 966 

(n=3-4 Z-stacks each from 3 animals). 967 

Figure 8-figure supplement 2 Imaging presynaptic terminals in proximity to dendritic 968 

spines. (A) Schematic for the IUE technique. Anesthetized dams have their uterine horns 969 

exposed at E15.5. DNA plasmid containing GFP with loading dye is injected into the lateral 970 

ventricle of each pup, followed by electric pulses to facilitate uptake of the plasmid. The horns 971 

are then placed back into the dam, the incision sutured, and the dam is allowed to recover and 972 

give birth to the electroporated litter. (B) 10x magnification image taken in V1 at P15 showing 973 

that IUE resulted in specific GFP labeling of neurons in cortical Layer II/III. Secondary and 974 

tertiary dendrites from these neurons, which project to the S/Z, are then imaged by confocal 975 

microscopy. (C) Left: A single optical section taken from a confocal Z-stack shows a GFP-976 

labeled dendrite (blue) in the S/Z along with surrounding presynaptic puncta (VGlut1-green; 977 

VGlut2-red).   Middle:   Imaris   surface   rendering   was   used   to   image   the   dendrite’s   structure,  978 

including   spines,   in   3D.   Right:   The   ‘Spots’   function   of   Imaris   allowed   for   the   resolution   of  979 

individual presynaptic puncta in three-dimensional space. Scale bar, 1 µm. (D) After applying 980 



the  Matlab  ‘Spots  close  to  surface’  algorithm  in  Imaris,  in  order  to  isolate  spots within 0.2 µm of 981 

the dendrite, spines with closely-associated presynaptic puncta can be quantified. An asterisk 982 

indicates the location of a SMEC which is contacted by both a VGlut1 and VGlut2 terminal. (E) 983 

Quantification in P15 WT V1 showing the percentage of spines that contact various presynaptic 984 

puncta, including the various subtypes of SMECs (3 animals, n=9 dendrites). 985 

 986 

Video 1 An axon (green) from Layer II/III V1 reconstructed in 3D from ssEM images of 987 

P25 hevin KO. SMEC 1 from Dendrite 1 (blue) makes Synapse 1 (red) with this axon and 988 

Synapse 2 (yellow) with a second unshown axon. On a different part of this same axon, it makes 989 

Synapse 3 (red) with SMEC 2 from Dendrite 2 (pink) that also contacts a third (also unshown) 990 

axon at Synapse 4 (yellow). 991 

 992 

Supplementary File 1 Puncta Analyzer plugin for ImageJ. This plugin allows for the 993 

quantification of co-localized synaptic puncta from immuno-stained cells or tissue. The plugin 994 

separates the original image file into red and green channels, subtracts background (rolling ball 995 

radius=50), and asks the user to threshold each channel individually in order to detect discrete 996 

puncta without introducing noise. The Puncta Analyzer plugin then uses an algorithm to detect 997 

the number of puncta that are in close alignment across the two channels, yielding quantified co-998 

localized puncta. 999 
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