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SUMMARY

Myelin is essential in vertebrates for the rapid propa-
gation of action potentials, but the molecular mecha-
nisms driving its formation remain largely unknown.
Here we show that the initial stage of process exten-
sion and axon ensheathment by oligodendrocytes
requires dynamic actin filament assembly by the
Arp2/3 complex. Unexpectedly, subsequent myelin
wrapping coincides with the upregulation of actin
disassembly proteins and rapid disassembly of the
oligodendrocyte actin cytoskeleton and does not
require Arp2/3. Inducing loss of actin filaments drives
oligodendrocyte membrane spreading and myelin
wrapping in vivo, and the actin disassembly factor
gelsolin is required for normal wrapping. We show
that myelin basic protein, a protein essential for
CNS myelin wrapping whose role has been unclear,
is required for actin disassembly, and its loss pheno-
copies loss of actin disassembly proteins. Together,
these findings provide insight into the molecular
mechanism of myelin wrapping and identify it as an
actin-independent form of mammalian cell motility.

INTRODUCTION

Myelination of axons in the CNS is essential for the rapid propa-

gation of action potentials, and loss of myelin in demyelinating

diseases leads to severe disabilities (Bercury and Macklin,

2015). During myelination, oligodendrocyte (OL) precursor cells

(OPCs) differentiate and undergo a series of morphological

changes: they (1) extend numerous cellular processes to (2) en-

sheath axons, (3) spirally wrap around the axon underneath

previous wraps, (4) simultaneously extend longitudinally along

the axon, (5) and compact their cytoplasm to formmaturemyelin.

The geometry of this complex cellular process was recently

defined (Snaidero et al., 2014), but its molecular mechanism

remains unknown.
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Eukaryotic cells control their shape and move by means of a

dynamic actin cytoskeleton. ‘‘Classical’’ cell motility is driven

by the lamellipodium, an actin-based structure constructed

by coordinated activities of actin filament nucleation—by the

Arp2/3 complex—and filament capping, crosslinking, and

severing by multiple other proteins (Fletcher and Mullins,

2010). The Arp2/3 complex (hereafter Arp2/3) builds branched

networks of actin filaments and is essential for cell migration

on a surface (Wu et al., 2012). However, work in the past decade

reveals that cells moving in confined, three-dimensional spaces

often utilize actin-independent mechanisms to propel them-

selves forward (Paluch and Raz, 2013). The current model of

CNS myelin wrapping suggests that the OL inner tongue is a

modified lamellipodium, using the force of Arp2/3-dependent

actin assembly to spirally wrap around axons (Bauer et al.,

2009). To date there is little direct experimental evidence to sup-

port this hypothesis, and the precise role of the actin cytoskel-

eton in CNS myelination remains to be elucidated.

Previous work in vitro has suggested that actin dynamics are

required for early stages of OL process outgrowth and branching

(Wilson and Brophy, 1989; Song et al., 2001). In vivo, signaling

pathways that regulate the actin cytoskeleton in other cell types

have roles in myelination in both the CNS and peripheral nervous

system (PNS), including phosphoinositide signaling (Goebbels

et al., 2010; Snaidero et al., 2014), the Rho family GTPases

(Thurnherr et al., 2006), and the Arp2/3 activators WAVE1 in

the CNS (Kim et al., 2006) and N-Wasp in the PNS (Novak

et al., 2011; Jin et al., 2011). Gene profiling studies from our

lab and others have revealed that the mRNA of many proteins

that regulate the actin cytoskeleton are highly induced when

OPCs differentiate into myelinating OLs and that, surprisingly,

a number of well-characterized proteins that cause disassembly

of actin filaments (e.g., gelsolin and cofilin family members) are

among the most abundant transcripts in myelinating OLs (Liu

et al., 2003; Zhang et al., 2014).

Myelin basic protein (MBP) is the major structural element of

CNS myelin, where it is essential for both myelin wrapping and

compaction (Readhead et al., 1987). MBP binds to PI(4,5)P2

on the cytoplasmic faces of the OL plasma membrane, and

self-assembles to promote compaction andmembrane polariza-

tion (Nawaz et al., 2009; Aggarwal et al., 2011). In addition to
c.
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Figure 1. Loss of Actin Filaments during Myelination In Vivo

(A–C) P45 mouse spinal cord transverse sections stained for compact myelin with FluoroMyelin Red (FMred, red), actin filaments with Alexa 488-phalloidin

(phalloidin, green), and nuclei (DAPI, blue). (A) Wide field epifluorescence showing low levels of actin filaments in mature white matter. (B) Confocal microscopy

revealed lowest levels of actin filaments (phalloidin, green) in compact myelin (FMred, red). Arrows point to compact myelin. (C) Representative line scan through

two myelinated axons from (B); a.u., arbitrary units.

(D) Immunoblotting of brain lysate and fractionated compact myelin from adult mice. n = 3 mice fractionated on two separate days.

(E) Wide field quantification of phalloidin and FMred staining intensities in mouse dorsal white matter regions of interest (ROI) during postnatal development. Error

bars: SEM from n = 5–6 animals per time point; multiplicity adjusted p values shown for P10 (phalloidin) or P5 (FMred) compared with other days, calculated using

Tukey’s multiple comparisons test. ***p < 0.001, ****p < 0.0001.

(legend continued on next page)
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compaction, MBP is also essential for myelin wrapping (Rose-

nbluth, 1980; Shine et al., 1992), but its cellular mechanism

for promoting wrapping is unknown. MBP has also been shown

to interact with actin in vitro (Bary1ko and Dobrowolski, 1984;

Boggs and Rangaraj, 2000), but the functional significance of

this and whether MBP interacts with actin in vivo are also

unknown.

Here we show that the actin cytoskeleton controls CNS myeli-

nation in two distinct steps. First, actin assembly by the Arp2/3

complex drives OL process outgrowth and branching; consis-

tent with this, ArpC3 conditional knockout mice fail to ensheath

axons. Second, as OLs differentiate they massively disassemble

their actin cytoskeleton, which induces myelin wrapping. Mice

lacking the actin disassembly factor gelsolin have wrapping de-

fects, and inducing global actin disassembly accelerates the

spreading of OL myelin membranes in vitro and myelin wrapping

in vivo. In contrast, Arp2/3 is not required for myelin wrapping.

Finally, we provide evidence that MBP is required for actin disas-

sembly, which it may regulate by binding tomembrane PI(4,5)P2,

and releasing actin disassembly proteins to induce myelin

wrapping.

RESULTS

Actin Dynamics during Developmental Myelination
In Vivo
Despite the importance of myelination for the normal function of

the CNS, the cellular mechanisms that allow OL membranes to

spirally wrap and compact around axons remain poorly under-

stood. Since eukaryotic cells change their shape and move by

means of a dynamic actin cytoskeleton, we investigated how

the OL cytoskeleton is organized and regulated during myelina-

tion. We first examined the actin cytoskeleton in mature myelin

in vivo, using phalloidin staining of actin filaments in P45 spinal

cord sections. We validated the specificity of phalloidin for actin

filaments in tissue sections with the actin filament binding drug,

jasplakinolide (Jasp), which blocks phalloidin staining in a dose-

dependent manner (Figure S1). Whereas actin filaments were

highly enriched in gray matter, white matter tracts containing

myelinated axons had comparatively low levels of actin filaments

(Figure 1A). Higher magnification confocal micrographs showed

that the bulk of actin filaments in whitematter was excluded from

compact myelin (Figures 1B and 1C), similar to the PNS (Trapp

et al., 1989). In agreement with this observation, purified myelin

fractions appeared devoid of actin protein by immunoblotting

(Figure 1D).

We next quantified actin filaments and compact myelin in the

developing dorsal white matter of the spinal cord during active

myelination. White matter actin filament levels peaked at the

start of myelination (P10), but actin filament levels rapidly

declined as myelin wrapping and compaction began (Figure 1E).

To look more closely at actin in nascent myelin sheaths, we co-

stained spinal cord sections for actin filaments and MBP at the

onset of myelination (P5). MBP protein level is proportional to
(F and G) Confocal microscopy of developing P5 mouse spinal cord transverse s

with lowMBP intensity and high phalloidin intensity. Arrowheads, more mature she

P5 myelin sheaths showed that actin filament levels (phalloidin) decreased with i

See also Figure S1.
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the degree of CNSmyelin wrapping (Shine et al., 1992), so immu-

nostaining with a validated MBP antibody (Figure S1) indicates

the maturity of individual myelin sheaths in tissue sections.

Immature myelin sheaths with low levels of MBP had high levels

of actin filaments, whereas actin filament levels were dramati-

cally reduced in more mature sheaths (Figures 1F and 1G), sug-

gesting that actin filaments are disassembled in OLs during the

latter stages of myelination.

Two Phases of Actin Cytoskeletal Dynamics during OL
Differentiation
We next asked whether purified OLs in culture could be used to

study the changes in the actin cytoskeleton during myelination

that we observed in vivo. We prospectively isolated OPCs from

neonatal rats and induced their differentiation into OLs, fixed

them at different stages of differentiation over 6 days of culture,

and stained their actin cytoskeletons with phalloidin. OLs un-

dergo stereotyped morphological changes as they differentiate

(Figure 2A), extending numerous cellular processes to form an

arborized morphology, then flattening out into myelin membrane

sheets that are similar to ‘‘unrolled’’ myelin (Movie S1 and Fig-

ure S2; Aggarwal et al., 2011). Consistent with previous work

(Wilson and Brophy, 1989; Song et al., 2001), we found that

these early OL processes were highly enriched in actin filaments

prior to MBP expression (Figures 2B–2D). Using structured illu-

mination superresolution microscopy we observed that these

OL processes were composed of ordered arrays of actin fila-

ments and were morphologically akin to neuronal growth cones

(Figure 2G; Fox et al., 2006). Accordingly, inhibiting actin filament

dynamics with latrunculin A (LatA) or Jasp during these early

stages arrested OL process extension and arborization (Movies

S2 and S3).

As OLs matured further and began to express MBP, however,

their actin cytoskeleton was almost completely disassembled,

first in MBP+ compact myelin membrane regions (Figure 2E)

and then throughout the entire OL (Figures 2F and 2H). Immuno-

blotting revealed that total cellular actin persisted throughout

differentiation, so loss of actin filaments corresponded to their

disassembly (Figure 2I). Thus, OLs in culture recapitulated the

disassembly of actin filaments that we observed in developing

myelin in vivo, even in the absence of neurons or a native CNS

microenvironment.

Arp2/3-Mediated Actin Assembly Is Required for Myelin
Initiation in the CNS
Our characterization of the OL actin cytoskeleton in vivo and in

culture suggests that myelination proceeds in two phases: first,

dynamic actin assembly powers early steps of myelination and,

second, the OL cytoskeleton is completely disassembled during

the formation ofmature, compactmyelin. To test this hypothesis,

we first explored the role of actin in the initial stage of axon en-

sheathment using OPC-neuron coculture assays. When plated

on dorsal root ganglion neuron (DRG) axons, differentiating

OLs initially extended processes enriched in actin filaments,
ections, stained for MBP (red) and phalloidin (green). (F) Arrows, early sheaths

aths with highMBP intensity and low phalloidin. (G) Quantification of individual

ncreasing MBP intensity.

c.
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Figure 2. Two Phases of Actin Dynamics during OL Differentiation

(A–F) OL differentiation time course. (A) Cartoon depicting stereotyped stages of OL morphology changes during differentiation in culture in the absence (top) or

presence (bottom) of neurons. (B–F) Primary rat OPCs were fixed before differentiation (B) or after differentiating for 3 (C), 5 (D), or 6 (E and F) days. OLs were

immunostained for MBP (red) and stained for actin filaments (phalloidin, green and on right, D’–F’) and nuclei (DAPI, blue).

(G) Structured illumination microscopy of phalloidin staining in a single OL process.

(H) Quantification of actin filament levels in OLs at each stage of differentiation. Error bars: SEM from n > 50 OLs per day.

(I) Immunoblot of total OL actin protein (top, 42 kDa) and GAPDH (bottom, 37 kDa) at 1, 2, 3, and 5 day differentiation.

See also Figure S2 and Movie S1.
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Figure 3. Actin Assembly by Arp2/3 Is Required for Myelin Initiation

(A) Cocultures of DRG neurons and OPCs grown for 7 (left) or 9 (right) days, then fixed and stained for MBP, phalloidin, and axons (neurofilament, NF).

(B) OPCs were differentiated for 1d and immunostained for the Arp2/3 subunit ArpC1 (red) and counterstained with phalloidin (green).

(C and D) OLs required Arp2/3 for normal levels of actin filaments and to ensheath axons. (C) A dilution series of Arp2/3 inhibitor CK-666 was applied to OLs for

24 hr, thenOLswere fixed and stained for actin filaments with phalloidin (see also Figure S3). (D) Axon ensheathment assay of OPCs onRGC neurons, treatedwith

a dilution series of CK-666 or the inactive control compound CK-689. Graph shows quantification of axonal ensheathment per Olig2+ OPC/OL, normalized to

DMSO-treated controls. n = 2 experiments. *p < 0.05, **p < 0.01, Dunnett’s multiple comparison test.

(legend continued on next page)
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but as they matured and developed MBP+ myelin internodes,

the actin filaments disappeared, consistent with isolated OLs

above (Figure 3A). Inhibiting actin dynamics with LatA and

Jasp blocked axon ensheathment in a dose-dependent manner

and did so at concentrations that did not affect OL differentiation

or viability (Figure S2).

To determine the contribution of actin assembly to myelina-

tion in vivo, we next addressed the role of Arp2/3, the major

actin nucleation factor that assembles branched arrays of

actin filaments in the lamellipodia of motile cells (Fletcher and

Mullins, 2010; Wu et al., 2012). Our recent RNA sequencing

(RNA-seq) analysis of CNS glia indicates that all seven subunits

of Arp2/3 are expressed by myelinating OLs (Figure S3; Zhang

et al., 2014). Both endogenous ArpC1 and GFP-Arp3 localized

to actin-filament-rich cell edge as well as the OL cell body

(Figures 3B and S3). Pharmacological inhibition of Arp2/3 by

CK-666 (Nolen et al., 2009) induced a dose-dependent loss

of OL actin filaments, suggesting that Arp2/3 plays a major

role in constructing the OL cytoskeleton during the early phase

of myelination (Figures 3C and S3). Consistent with this finding,

CK-666 significantly inhibited OL ensheathment of retinal gan-

glion cell (RGC) axons in myelinating cocultures, whereas the

inactive control compound CK-689 had only a mild effect at

the highest concentration (Figure 3D). In isolated OLs CK-666

strongly inhibited the formation of actin-filament-rich growth

cones, process outgrowth, and branching (Figure S3). CK-666

also mildly inhibited proliferation of OPCs (Figure S3). These

results suggested that Arp2/3-dependent actin assembly is

required in early stages of OL differentiation and the initiation

of myelination.

To determine if Arp2/3 is required for myelination in vivo, we

conditionally deleted the essential subunit ArpC3 (Yae et al.,

2006) using a floxed allele (Kim et al., 2013) and several orthog-

onal Cre lines that function in the OL lineage. We first used

CNP-Cre (Lappe-Siefke et al., 2003), which is expressed by early

OLs at the start of myelination. ArpC3Flox/Flox; CNPCre/+ condi-

tional knockouts (hereafter, CNPCre-CKOs) were born in normal

Mendelian frequencies, and developed severe motor defects

including tremor and ataxia in the second to third postnatal

weeks. In contrast, ArpC3Flox/Flox;CNP+/+ (Flox) and ArpC3Flox/+;

CNPCre/+ (heterozygote) littermates appeared normal. As CNP-

Cre is also expressed by Schwann cells, motor defects are likely

due, at least in part, to myelination defects in the PNS (J.B.Z. and

B.A.B., unpublished data). We confirmed recombination and

loss of ArpC3 protein in OLs by purifying mature OLs from the

brains of Flox, heterozygote, and CNPCre-CKO littermates by im-

munopanning (Figures 3E, 3F, and S4). CNPCre-CKO OLs had a
(E and F) Recombination (E) and reduction of ArpC3 protein (F) in OLs purified fr

ArpC3Flox/Flox; CNPCre/+ (CNPCre-CKO) mice by immunopanning. Flox-R, recom

sequencing. n = 4 CNPCre-CKO, 3 Flox, 1 heterozygote. (F) Immunoblot showing

(G and H) Transmission electron microscopy of optic nerves from Flox (left), CNPC

in (H) shows percent axons myelinated at P18, P45, and P90. Each data point is a

***p < 0.001, ***p < 0.0001, Dunnett’s multiple comparison test (P18 and P45) or

(I) Percent axons myelinated in optic nerves from P72 Flox and ArpC3Flox/Flox; Olig

Student’s t test.

(J) EM micrograph shows an example of a myelin outfolding in a P90 CNPCre-CK

(K) Quantification of outfoldings in Flox versus CNPCre-CKO littermates at P90. n

Error bars: SEM. See also Figures S2–S5 and Movies S2 and S3.

Deve
70.5% ± 3.6% reduction of ArpC3 protein by immunoblotting,

and the residual �30% was likely due to the presence of

‘‘escaper’’ OLs that do not recombine fully (Flox, non-recom-

bined band; Figure 3E) and have a proliferative advantage over

CKO OLs.

The optic nerve is an ideal location to quantify CNS myeli-

nation, since the axons are aligned, myelination is relatively

uniform, and the geometry and timing of myelin wrapping is

well described (Dangata and Kaufman, 1997; Snaidero et al.,

2014). We observed striking hypomyelination in optic nerves

of CNPCre-CKO mice, but not in Flox littermates (Figure 3G).

CNPCre-CKOs had fewer than half as many axons myelinated

than Flox littermates at all ages analyzed (Figure 3H), suggesting

that OLs lacking functional Arp2/3 are unable to initiate axon en-

sheathment. This phenotype persisted from P18 through P90, so

it is not due to a developmental delay. In contrast, heterozygotes

displayed small but significant hypomyelination at P18, but

appeared grossly normal by P45. Axon caliber and axonal mito-

chondria size were unaffected in CNPCre-CKOs, and there was

only a small increase in the number of degenerated axons at

P90 (an expected result of hypomyelination), arguing that hypo-

myelination is largely due to cell autonomous loss of ArpC3 in

OLs (Figure S4).

Since CNP-Cre expression is not completely restricted to OLs,

we also utilized Olig2-Cre (Schüller et al., 2008) to conditionally

delete ArpC3 in OPCs. ArpC3Flox/Flox; Olig2Cre/+ mice (Olig2Cre-

CKOs) were severely hypomyelinated (Figure 3I), similar to

CNPCre-CKOs. At P8 therewas no gross difference in the number

of OPCs in the optic nerves of Olig2Cre-CKOmice comparedwith

Flox littermates, suggesting that hypomyelination in Olig2Cre-

CKOs was unlikely due to impaired OPC migration (Figure S4).

OLs purified from Olig2Cre-CKO mice had fewer branches and

dim phalloidin staining (Figure S4), similar to treating with the

Arp2/3 inhibitor CK-666 (Figure S3).

Despite the hypomyelination we observed by EM, immunohis-

tochemical staining of MBP and FluoroMyelin Red revealed no

significant differences in staining intensity in the optic nerves be-

tween CNPCre-CKO mice and Flox littermates (Figure S5). This

suggests that gross levels of myelin membrane are not affected

in CNPCre-CKO mice or that these staining techniques are only

sensitive to all-or-none levels of myelin (see Figure S1). Indeed,

CNPCre-CKOs displayed a 10-fold higher frequency of redun-

dant myelin membranes, or outfoldings, than Flox littermates

(Figures 3J, 3K, and S5), similar to those observed in hyper-

myelinating mutants of phosphoinositide signaling and some

myelin pathologies (Goebbels et al., 2010). Outfoldings were

often several microns in length and occasionally appeared to
om P18 to P20 ArpC3Flox/Flox (Flox), ArpC3Flox/+; CNPCre/+ (heterozygote), and

bined; Flox-NR, non-recombined; WT, wild-tpe. Bands were confirmed by

reduction of ArpC3 protein in CNPCre-CKO OLs. n = 2 animals per genotype.
re-CKO (right), and heterozygote (not shown) mouse littermates. Quantification

verage from a single animal. n = 5–7 animals per age, per genotype. **p < 0.01,

Student’s t test (P90).

2Cre/+ (Olig2Cre-CKO) mouse littermates. n = 5 animals per genotype; **p < 0.01,

O mouse.

= 6 animals per genotype; **p < 0.01, Student’s t test.
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Figure 4. Arp2/3 Is Dispensable for Myelin Wrapping

(A) Experimental paradigm for tamoxifen injections to ablate ArpC3 during myelin wrapping.

(B) Reduction of ArpC3mRNA andprotein in OLs purified at P25 fromArpC3Flox/Flox (Flox) andArpC3Flox/Flox; Plp1-CreERT (inducedCKO, Plp1Cre-iCKO)mice that

were injectedwith tamoxifen fromP10 toP14. Top left: immunoblotting ofArpC3 from immunopannedOLs. Top right: densitometry ofArpC3protein inOLspurified

from n = 3 animals per genotype; *p < 0.05, Student’s t test. Bottom: single-cell RT-PCR analysis shows ArpC3 knockout OLs (GAPDH but no ArpC3, *), wild-type

OLs (both GAPDH and ArpC3 bands, d), or no cells (neither GAPDH nor ArpC3, B). n > 22 reactions per animal, from one Flox and two Plp1Cre-iCKO mice.

(C–E) Transmission electron microscopy of P30 optic nerves showed no difference in number of myelin wraps in Plp1Cre-iCKOs. (C) Example micrographs.

(D) Average number ofmyelin wraps per animal. (E) Distribution of number of wraps in all animals. Error bars: SEM from n = 5–6 animals per genotype; >100myelin

sheaths per animal; n.s., not significant, Student’s t test.

(legend continued on next page)
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aberrantly ensheath multiple axons. An average optic nerve

transverse section displayed outfoldings in 2.2% ± 0.5% of

CNPCre-CKO myelin sheaths (0.2% ± 0.1% in Flox littermates),

but this may underestimate the number of internodes with out-

foldings somewhere along their length (Snaidero et al., 2014).

We therefore used serial block face scanning EM to reconstruct

nerves of single Flox and CNPCre-CKO littermates. In the CKO

nerve, outfoldings typically originated focally along an internode,

and appeared more common than estimated from single

transverse sections (Figure S5). We observed similar myelin

outfoldings when ArpC3 was deleted by Olig2-Cre (Figure S5).

Together, these data indicate that Arp2/3-mediated actin

assembly is essential for normal myelin initiation and axon

ensheathment, and provide evidence that actin filaments play

a ‘‘steering’’ role during myelin wrapping, to limit aberrant myelin

membrane growth and outfoldings.

Myelin Wrapping Is Independent of Arp2/3-Mediated
Lamellipodial Growth
Myelin wrapping has been proposed to be driven by dynamic

actin assembly by Arp2/3, like the lamellipodium of a motile

cell. However, this has been difficult to test, in part because

actin plays an essential role during myelin initiation as shown

above. Is Arp2/3-mediated actin assembly also required to po-

wer myelin wrapping? We used tamoxifen-inducible Plp1-

CreERT mice (Doerflinger et al., 2003) to ablate ArpC3 in

OLs after ensheathment, but during wrapping (Figure 4A).

The mouse optic nerve progresses from entirely unmyelinated

at birth to almost completely ensheathed in the second post-

natal week; subsequently, the majority of myelin wrapping

occurs between the second and fifth postnatal week (Dangata

and Kaufman, 1997). Thus, we injected mice with five daily

injections of tamoxifen from P10 to P14 to induce loss of

ArpC3 after ensheathment, and we measured myelin wrapping

at P30.

We first confirmed that our tamoxifen injection paradigm

induced recombination in OLs in the optic nerve, using the fluo-

rescent reporter mouse, mT/mG (Muzumdar et al., 2007; Fig-

ure S5). We next confirmed loss of ArpC3 protein during active

wrapping (P25) by immunoblotting purified OLs (Figure 4B).

ArpC3 was reduced to 45.0% ± 12.1% of wild-type levels in

OLs purified from tamoxifen-injected ArpC3Flox/Flox; Plp1-

CreERT mice (induced CKOs, hereafter Plp1Cre-iCKOs), sug-

gesting that some OLs escaped recombination. Consistent

with this, single-cell RT-PCR analysis of individual immuno-

panned OLs revealed two discrete populations of OLs from

Plp1Cre-iCKO animals, with either (1) normal or (2) undetectable

levels of ArpC3 mRNA (Figure 4B). Approximately half of OLs

from Plp1Cre-iCKO mice expressed little or no ArpC3, whereas

all OLs purified from Flox littermates had normal levels of

ArpC3. In vivo, we noted an increased frequency of myelin
(F) Experimental paradigm for tamoxifen injections to ablate PTEN and/or ArpC3

(G) Transmission electron microscopy of optic nerves at P90 showing increased

mice, compared with double floxed controls (left).

(H) g-ratio analysis of optic nerves at P90 shows lower g-ratios after deletion of

(I) Axon diameter was unaffected.

Error bars: SEM from n = 6 animals per genotype; >100 myelin sheaths measu

comparison test. See also Figure S5.

Deve
outfoldings in Plp1Cre-iCKOs compared with Flox littermates

injected with tamoxifen (Figure S5), indicating loss of ArpC3

function in at least a subset of Plp1Cre-iCKOOLs. Together these

observations support recombination and loss of ArpC3 protein in

�50% of Plp1Cre-iCKO OLs, rather than reduced ArpC3 protein

in all Plp1Cre-iCKOOLs, consistent with previous observations of

Plp1-CreERT efficacy in the optic nerve (Doerflinger et al., 2003).

Remarkably, ablation of ArpC3 after ensheathment did not

prevent myelin wrapping (Figures 4C–4E). We counted the

number of myelin wraps in P30 Flox and Plp1Cre-iCKO litter-

mates and found no difference in the average number of wraps

(Figure 4D), nor in the distribution of wrap number (Figure 4E).

We also saw no significant decrease in the number of axons

myelinated in Plp1Cre-iCKOs, confirming that tamoxifen-induced

loss of ArpC3 occurs after myelin initiation (Figure S5). Thus,

developmental myelin wrapping does not require Arp2/3.

Next, we utilized a hypermyelinating mouse mutant to further

test the role of Arp2/3 in wrapping. Myelin wrapping in the optic

nerve normally plateaus after P30, but can be experimentally re-

initiated by knocking out the lipid phosphatase PTEN in OLs,

leading to hypermyelination and increased wrapping (Goebbels

et al., 2010; Snaidero et al., 2014). We therefore tested whether

ArpC3 was required for increased wrapping stimulated by loss

of PTEN. We injected mice with tamoxifen from P30 to P34

to induce conditional inactivation of PTEN and/or ArpC3 in

OLs, then analyzed optic nerves 2 months later (Figure 4F). As

expected, inducing loss of PTEN in OLs caused a significant in-

crease in myelin thickness compared with ArpC3/PTEN double-

flox or double-heterozygote controls (Figures 4G and 4H)without

affecting axon diameter (Figure 4I). Simultaneous deletion of

ArpC3 and PTEN led to a similar increase in myelin wrapping,

indicating that ArpC3 was not required for the increased wrap-

ping triggered by PTEN deletion. Taken together, our results

showed that Arp2/3-dependent actin assembly was required

for myelin initiation, but not for spiral wrapping of myelin.

Actin Disassembly DrivesMyelin Membrane Growth and
Wrapping
If actin assembly by Arp2/3 is not required for OLs towrap axons,

what powers wrapping? Analysis of RNA-seq data from three

stages of the OL lineage in vivo (Zhang et al., 2014) revealed

that, whereas actin assembly promoting proteins (e.g., Arp2/3

subunits) are statistically enriched in OPCs, actin-disassembly-

promoting proteins are highly enriched in actively myelinating

OLs (Figure S6). Two of these proteins, gelsolin and cofilin-1,

are among the top 50 most highly expressed genes by OLs at

the start of myelination (Figure S6). We confirmed induction of

actin disassembly proteins as OLs differentiate in culture using

immunoblotting (Figure 5A). The upregulation of these proteins

corresponded temporally with actin disassembly in maturing

OLs (Figures 2A–2G).
at P30, and full genotypes of mice.

myelin wrapping in PTEN-iCKO (middle) and ArpC3+PTEN double iCKO (right)

PTEN or both ArpC3+PTEN.

red per animal; n.s., not significant; *p < 0.05, **p < 0.01, Dunnett’s multiple
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Figure 5. Actin Disassembly Drives Myelin Wrapping

(A) Induction of actin disassembly proteins as OLs differentiate. Primary rat OPCs differentiated for indicated time prior to immunoblotting.

(B) Primary rat OPCs were differentiated for 2 days until arborized, then treated overnight with DMSO (carrier, top left) or 125 nM LatA to disassemble the actin

cytoskeleton (micrographs outlined in red). Micrographs show thresholded MBP immunostaining.

(C) Quantification of morphology after overnight treatment with DMSO or LatA. The cartoon shows examples of each morphology. n = 3 biological replicates.

(D) Live cell imaging of 3-day differentiated primary rat OPCs treated with LatA. The quantification of the percent area change over 5 min before or after LatA

treatment, measured from image stills. n = 7 OLs from 2 experimental days, **p < 0.01, paired Student’s t test.

(E and F) Quantification of average g-ratios of myelinated axons (E), and as a function of axon diameter (F), in adult gelsolin knockout mice (green) compared with

wild-type littermate controls (gray). n = 6 animals per genotype. **p < 0.01, Student’s t test.

(legend continued on next page)
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To test whether actin disassembly is a signal formorphological

changes during myelination, we allowed OPCs to differentiate

normally until they were fully arborized, but had not yet flattened

into myelin membrane sheets (i.e., arborized stage; Figure 2E),

then induced actin disassembly with LatA. LatA sequesters

free actin monomers and prevents them from reassembling

into filaments, so prolonged treatment causes net disassembly

of all dynamically treadmilling actin. Overnight treatment with

nanomolar concentrations of LatA caused near-complete disas-

sembly of the OL actin cytoskeleton (Figures S2 and S6) and

induced arborized OLs to flatten and spread their membranes

(Figures 5B and 5C). Induction of cell spreading is rapid, as we

observed an 8.2% ± 2.4% increase in cellular area after only

5 min of treatment with LatA (Figure 5D). This result is surprising

given that most cells require actin filaments to maintain their

shape. OLs that had already disassembled their actin and

spread into myelin membrane sheets (i.e., lamellar stage) are un-

affected by LatA (Figure 5C; Aggarwal et al., 2011).

Is actin disassembly required formyelinwrapping in vivo?Of all

the actin disassembly proteins expressed by OLs, gelsolin is the

highest at the RNA level (Figure S6). We analyzed myelin wrap-

ping in the optic nerves of adult gelsolin knockout mice (Gsn�/�)
and found a small but significance decrease in myelin thickness,

compared with wild-type littermates (Figures 5E and 5F). There

was no difference in axon caliber in knockout mice (Figure S6),

suggesting that myelin differences are not due to an indirect

effect on axon caliber. However, gelsolin is not completely

essential for wrapping, which could be explained by the high

expression of cofilin family proteins in myelinating OLs, and the

observation that gelsolin knockout brains display compensatory

increases in cofilin activity (Kronenberg et al., 2010).

Since multiple actin disassembly proteins may collaborate

to disassemble the OL cytoskeleton, and on the basis of our

observation that pharmacological-induced actin disassembly

promoted OL actin disassembly and membrane spreading,

we utilized LatA in vivo to assess the role of actin disassembly

in myelin wrapping during development. We first confirmed that

LatA treatment of intact CNS tissue induced significant disas-

sembly of actin filaments in developing white matter (Figure S6).

Next, we surgically implanted LatA- or DMSO (carrier)-loaded

gelfoam on the surface of the dorsal spinal cord of P12 mice

during active CNS myelination. We treated mice continuously

for four days, then perfused for EM at P16. LatA induced a

robust increase in myelin wrapping compared with DMSO-

treated controls (Figures 5G–5K). We also observed occasional

redundant myelin outfoldings in LatA-treated animals, similar to

ArpC3 CKO animals (Figure 5L), with no obvious cell death or

axonal degeneration. The increase in myelin thickness in

LatA-treated animals corresponded to a decreased g-ratio,

and axon diameter was unaffected (Figure S6). Since, by P12,

myelination has already mostly initiated in the dorsal spinal

cord (Matthews and Duncan, 1971), the percent of myelinated

axons was not significantly affected (Figure S6). Taken
(G–L) Actin disassembly accelerates myelin wrapping in vivo. Gelfoam pre-loaded

of mice from P12 to P18. Representative TEM micrographs show DMSO-treate

occasional redundant myelin outfoldings (right). (I) Myelin in LatA-treated mice w

sheaths with obvious outfoldings. n = 4 animals treated with DMSO, 3 with LatA

Error bars: SEM. See also Figure S6.

Deve
together, these data provide evidence that actin disassembly

accelerates myelin wrapping.

MBP Is Required for OL Actin Disassembly
What signals actin to disassemble in order to promote myelin

wrapping? MBP is an intriguing candidate since its expression

by OLs and in myelin occurs simultaneously with actin disas-

sembly (Figures 1 and 2), and previous studies have suggested

that MBP and actin physically interact in vitro. We used super-

resolution microscopy to visualize MBP and actin in mature

primary OLs. MBP formed a highly ordered latticework on the

OL membrane (Figures 6A and 6B) suggestive of a ‘‘molecular

sieve’’ (Aggarwal et al., 2011). Domains of MBP lattices were

typically bounded by actin filaments. Line scans showed that

MBP and actin filaments were completely non-overlapping, sug-

gesting that they do not normally interact in OLs (Figure 6C).

Temporally, actin filament and MBP levels were anti-correlated

in OLs during their differentiation (Figure 6D). MBP domains

began as small, sub-micron regions containing adjacent 200–

800 nm diameter rings that appeared to spread and/or fuse

as OLs matured (not shown), and were surrounded by actin fila-

ments. Intriguingly, knockdown of MBP by RNAi caused

aberrant actin filament accumulation in mature, lamellar OLs,

suggesting a defect in actin disassembly (Figure 6E; see also Fig-

ures 7E and 7F).

On the basis of these results, we asked whether MBP controls

actin disassembly during myelination in vivo. Remarkably, we

found that actin filament levels in white matter tracts of Shiverer

mice that lack MBP were nearly indistinguishable from gray mat-

ter, whereas wild-type littermates appeared normal (Figure 6F).

Developmentally, as white matter actin filament levels dropped

in wild-type mice, Shiverer white matter maintained high levels

of actin filaments (Figure 6H). This does not appear to be due

to increased numbers of OPCs in Shiverer white matter (Fig-

ure S7). We used confocal microscopy to look specifically at

OL processes around axons and found that Shiverer OLs had a

striking accumulation of actin filaments in their ensheathing pro-

cesses (Figure 6G). We observed �3-fold higher levels of actin

filaments in Shiverer myelin compared with wild-type littermate

controls (Figure 6I). This is consistent with the accumulation of

actin in cultured OLs lacking MBP (Figure 6E) and suggests

that normal actin disassembly is blocked in the absence of MBP.

How doesMBP regulate actin disassembly?MBPmay directly

disassemble actin filaments, although the absence of colocaliza-

tion between MBP and actin filaments in OLs suggests other-

wise. Indeed, ectopic expression of MBP in HeLa cells had

no effect on cellular actin filament levels (Figure S7). The high

induction of actin disassembly proteins during myelination and

the importance of gelsolin for normal wrapping (Figure 5) also

suggest that MBP may instead control OL actin disassembly

indirectly. A major cellular mechanism for regulating actin disas-

sembly is the binding of disassembly factors to membrane phos-

pholipids. Cofilin and gelsolin family members are sequestered
with DMSO or LatA was surgically implanted in the dorsal thoracic spinal cord

d (G) and LatA-treated (H) mice. LatA treatment induced thicker myelin and

as thicker, and (J and K) average g-ratio was lower. (L) Percentage of myelin

, on two experimental days; *p < 0.05, Student’s t test.
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Figure 6. Loss of MBP Leads to Accumulation of Actin Filaments

(A–C) Structured illumination microscopy of MBP (red) and actin filaments (phalloidin, green) in a 5-day differentiated OL (A); boxed area shown in more detail in

(B). (C) Representative line scan showing no spatial overlap between MBP and actin filaments in mature OLs.

(D) MBP and actin filament levels were anticorrelated in OLs through differentiation. Each data point is one OL.

(E) RNAi knockdown of MBP in OLs caused aberrant accumulation of actin filaments. Rat OPCs were transfected with control (nontargeting) or MBP-specific

small interfering RNA (siRNA), differentiated into OLs, and stained for MBP (red), actin filaments (phalloidin, green), and nuclei (DAPI, blue).

(F–I) Failure of OL actin disassembly inShiverermice that lackMBP. (F) Spinal cord transverse sections from P36wild-type (top) andShiverer (bottom) littermates,

stained for compact myelin with FMred (red) and actin filaments with phalloidin (green and grayscale on right). (G) Confocal microscopy revealed high levels of

(legend continued on next page)
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bymembrane PI(4,5)P2 and kept inactive; release from PI(4,5)P2

enables actin filament severing and disassembly (reviewed by

Hilpelä et al., 2004). Intriguingly, MBP binds to PI(4,5)P2 on OL

membranes, requiring it for stable attachment to the membrane

and maintenance of compact myelin (Nawaz et al., 2009, 2013).

Thus, MBP may regulate actin disassembly by competing with

cofilin and gelsolin for binding to membrane PI(4,5)P2. In this

model, high induction of MBP protein and its recruitment to

membrane PI(4,5)P2 triggers the release and activation of actin

disassembly proteins.

We used PI(4,5)P2-coated microbeads and purified proteins

to test whether MBP competes with actin disassembly proteins

for binding to PI(4,5)P2. In the absence of MBP, recombinant co-

filin-1 bound to PI(4,5)P2 beads. MBP also bound to PI(4,5)P2

beads, and increasing MBP concentrations completely blocked

cofilin-1 binding (Figures 7A and 7B). Cofilin was completely

competed off of PI(4,5)P2 beads by stoichiometric concentra-

tions of MBP, and this competition was dose dependent (Fig-

ure 7C). We also observed similar but less complete competition

with gelsolin (Figure S7). In OLs, dual knockdown of cofilin-1 and

gelsolin by RNAi prevented actin disassembly and closely phe-

nocopied RNAi of MBP (Figures 7D–7F). We propose that MBP

competes with actin disassembly factors for binding to mem-

brane PI(4,5)P2, enabling it to locally activate actin disassembly

at sites ofMBP compaction to drivemyelin wrapping (Figure 7G).

Future work aims to test this competition model in vivo and

determine the signals that control MBP-dependent actin disas-

sembly during myelination.

DISCUSSION

Myelin wrapping is essential in vertebrates for rapid propagation

of action potentials, axonal health, and forms of plasticity

(Bercury and Macklin, 2015), but the molecular mechanisms

that drive wrapping remain unknown. In this study we have

used a combination of in vivo and cellular approaches to eluci-

date the molecular mechanisms that drive CNS myelin initi-

ation and wrapping. Early stages of myelination—OL process

outgrowth and ensheathment of axons—require actin assembly

by Arp2/3. Unexpectedly, we find that myelin wrapping is

induced by disassembly of the OL actin cytoskeleton and does

not require Arp2/3. Further, we show that MBP is required for

actin disassembly during myelination, and we provide evidence

that it carries out this function by binding membrane PI(4,5)P2 to

release and activate actin disassembly proteins. Together, we

propose a two-step model of CNSmyelination in which actin as-

sembly by the Arp2/3 complex drives OL process extension to

ensheath axons, and then MBP induces actin disassembly to

trigger myelin wrapping (Figure 7H).

The Arp2/3 complex is required for extension of neuronal

growth cones (Yang et al., 2012) and for fibroblast lamellipodia

to respond to surface-attached extracellular matrix proteins

(haptotaxis; Wu et al., 2012). These may be analogous to the

early steps of myelination that we found to be Arp2/3 depen-
actin filaments (phalloidin, green) in OL processes that ensheath axons (neurofila

matter (H), and specifically around axons (myelin ROI, in I), is shown. Error bars

genotype at P42/44; *p < 0.05, ***p < 0.001, Student’s t test.

See also Figure S7.

Deve
dent: OL processes closely resemble growth cones (Figure 2G),

and ensheathment of axons may be a form of haptotaxis,

requiring the OL process to adhere and respond to molecules

on the axonal membrane. Moreover, a role in polarization or

‘‘steering’’ of this lamellipodial ensheathing process could

explain why dysregulated actin assembly (in ArpC3 CKOs and

following treatment with LatA) leads to inappropriate growth

of myelin membrane outfoldings away from the axon (Figures

3J, 5H, and S5). It will be interesting to elucidate axonal and

secreted signals that control Arp2/3-dependent OL process

outgrowth and ensheathment and whether these depend on

neuronal activity.

We uncovered actin disassembly as an unexpected, but ste-

reotyped, step inmyelination that occurs inmyelin sheaths in vivo

during development, in isolated OLs differentiating in culture,

and in myelinating cocultures of OLs and neurons. This transition

from actin-rich to near-complete disassembly is one of the

most dramatic rearrangements of a cell’s cytoskeleton that we

are aware of. We identified actin disassembly factors including

cofilin-1 and gelsolin as a gene ‘‘cassette’’ that is highly induced

at the start of myelination. Since actin disassembly proteins are

also essential in lamellipodia for normal actin turnover or in some

cases to initiate actin assembly, our results showing a role for

gelsolin in myelin wrapping do not, on their own, prove that actin

disassembly itself drives wrapping. Four lines of additional

evidence, however, strongly support our conclusion that disas-

sembly promotes wrapping independent of lamellipodial growth.

First, inducibly deleting ArpC3 after axon ensheathment has no

effect on myelin wrapping (Figures 4A–4E). Second, Arp2/3 is

not required for the extensive hypermyelination caused by con-

ditional knockout of PTEN in OLs (Figures 4F–4I). Third, global

loss of actin filaments using LatA accelerates myelin wrapping

during development, and this is not due to effects of LatA on

proliferation or differentiation of OLs (Figure 5). Fourth, OLs

highly upregulate a number of actin disassembly factors during

differentiation and completely disassemble their actin cytoskel-

etons (Figures 1, 2, and 5). Together, our data indicate that actin

disassembly is essential for myelin wrapping, which, contrary to

expectations, does not require Arp2/3-mediated actin assembly.

How is this dramatic disassembly of the OL cytoskeleton

regulated? Actin disassembly factors like gelsolin and cofilin

are kept inactive by sequestration on membrane PI(4,5)P2 and

are normally released and activated upon PI(4,5)P2 hydrolysis

by phospholipase C (Hilpelä et al., 2004). However, since MBP

requires PI(4,5)P2 for stable association to the myelin membrane

(Nawaz et al., 2009), this mechanism is likely incompatible with

myelination. Instead, our findings suggest that OLs have evolved

a separate mechanism for releasing and activating actin disas-

sembly proteins: direct displacement by MBP. This simple yet

elegant mechanism could enable precise coordination between

MBP-driven membrane compaction and actin disassembly. In

the future it will be important to test this model in vivo and identify

additional signals that control actin disassembly during myelin

wrapping.
ment, purple). The quantification of phalloidin staining grossly in dorsal white

: SEM from n = 3 animals per genotype at both P15 and P20, 6 animals per
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Figure 7. Model of How MBP Regulates OL Actin Disassembly

(A–C) MBP competes with actin disassembly proteins for binding to PI(4,5)P2. (A and B) 10 mM (A) or 1 mM (B) recombinant human cofilin-1 protein was incubated

with control or PI(4,5)P2 beads with the indicated concentration of native MBP, washed, and bound protein eluted with sample buffer. Immunoblots show bound

cofilin (top) and bound MBP (bottom). (C) Densitometry quantification of PI(4,5)P2-bound cofilin as a function of the molar ratio of MBP:cofilin. Inset, bound MBP.

n = 3 experimental days. See also Figure S7.

(D–F) Dual RNAi of gelsolin and cofilin phenocopies MBP RNAi. OPCs were transfected with nontargeting siRNA (control, top) or siRNAs targeting gelsolin and

cofilin (Gsn+Cfl1, bottom) or MBP (see Figure 6E), then differentiated for 6 days into mature OLs. (D) MBP (red) and actin filaments (phalloidin, green and false

colored on right). (E and F) Quantification of width (E) and phalloidin intensity (F) in actin rims at the OL cell edge. *p < 0.05, ***p < 0.001, ***p < 0.0001; Dunnett’s

multiple comparisons test; n = 3 experimental days. Error bars: SEM.

(G)Model of howMBPmay regulateactin disassemblyduringmyelination. Left, actin disassembly factors cofilin andgelsolin are normally sequesteredbyPI(4,5)P2

(PIP2), preventing them from disassembling actin filaments. Right, MBP binds to PI(4,5)P2 on the OL membrane, releasing cofilin/gelsolin to disassemble actin.

(H) Two-step model of myelin wrapping. (1) Ensheathment of axons by OL processes requires actin filaments (green), which also limit aberrant myelin membrane

growth. (2) Local actin disassembly in the inner tongue induces myelin wrapping.
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A Blebbing Motility Model of Myelin Wrapping
How does actin disassembly promote myelin wrapping? One

possibility is that disassembly itself induces expansion of the

OL inner tongue. Arp2/3-mediated actin filament assembly in

lamellipodia powers cell motility on surfaces, but cells often uti-

lize actin-assembly-independent forces to move in confined

spaces. These alternative modes of cell motility, collectively

called blebbing motility, operate by a general mechanism (Pal-

uch and Raz, 2013). First, disassembly of a cell’s actin filament

cortex initiates the site of membrane growth (blebbing). Second,

cellular contraction leads to increased intracellular pressure

of cytoplasm to deform the membrane at the site of blebbing,

pushing the membrane forward. Third, delivery of new plasma

membrane by exocytosis or lateral membrane flow allows for

persistent growth of the bleb.

The OL inner tongue represents an ideal candidate for bleb-

bing motility, as it grows by tunneling between previous myelin

wraps and the axonal membrane in highly confined (nano-

meter-scaled) spaces. In support of a blebbing model of myelin

wrapping, we have shown that actin disassembly promotes

myelin wrapping, rather than Arp2/3-dependent actin assembly

like in a lamellipodium. As in blebbing motility, OL actin disas-

sembly needs to be spatially regulated, as unrestricted actin

disassembly (by Arp2/3 ablation or LatA treatment) induces

aberrant growth of myelin membrane outfoldings. Both cellular

mechanisms for membrane delivery that drive blebbing have

been demonstrated in myelin: the OL inner tongue is a site of

exocytosis (Snaidero et al., 2014), and newly synthesized lipids

flow laterally through the membrane from the outside to the

inside of developing PNS myelin (Gould and Dawson, 1976).

In contrast to other forms of blebbing motility, myelination

appears to not require actomyosin contractility, as myosin II

expression drops during OL differentiation (Wang et al., 2008;

Zhang et al., 2014) and actin filaments are disassembled. How-

ever, membrane compaction by MBP may be sufficient to in-

crease OL intracellular pressure in the absence of actomyosin

contraction. Indeed, several lines of evidence suggest that

myelin compaction may be required for extensive wrapping:

MBP is absolutely required for CNS myelin wrapping (Rose-

nbluth, 1980; Shine et al., 1992), myelin wrapping beyond the

first few wraps does not initiate until after compaction begins

(Hildebrand et al., 1993), and spiral growth of the inner tongue

occurs simultaneously with compaction of outer layers of myelin

by MBP (Snaidero et al., 2014). Taken together with previous

studies, our findings suggest a modified blebbing model for

myelin wrapping in which MBP triggers actin disassembly and

compacts the OL membrane to increase cytoplasmic pressure

and drive membrane extension of the inner tongue.

EXPERIMENTAL PROCEDURES

All animal procedures were approved by Stanford University’s Administrative

Panel on Laboratory Animal Care. Full details are provided in the Supplemental

Experimental Procedures. Complete protocols available upon request from

brad.zuchero@gmail.com.

Mouse Lines and Experiments

Shiverer and PTEN-floxed mice were from The Jackson Laboratory (stock

numbers 001428 and 006440). Previously created ArpC3-floxed (Kim et al.,

2013), CNP-Cre (Lappe-Siefke et al., 2003), Olig2-Cre (Schüller et al., 2008),
Deve
and Plp1-CreERT (Doerflinger et al., 2003) mouse lines were maintained by

breeding with C57BL/6 mice. Gelsolin knockout mice (Witke et al., 1995)

were maintained as described (Kronenberg et al., 2010). All experiments

with mutants were performed blindly without knowledge of their genotype.

We observed no sexual dimorphism of myelination defects in ArpC3 CKO

mice, so male and females were pooled for analysis. For in vivo application

of LatA, we used P12 C57BL/6 mice and harvested tissue for EM 4 days after

surgery (see Supplemental Experimental Procedures).

Immunohistochemistry of tissue was performed by standard methods.

Compact myelin was stained with FluoroMyelin Red (FMred, Invitrogen) ac-

cording to the manufacturer’s protocol, and actin filaments were stained

with Alexa Fluor-conjugated phalloidin (Invitrogen). Specificity of anti-MBP

(Abcam ab7349) was validated using Shiverer OLs and tissue, which lack

MBP expression (Figure S1). Transmission electron microscopy (TEM) of optic

nerves was performed in conjunction with the Stanford Cell Sciences Imaging

Facility.

Purification, Culture, and Immunostaining of Cells

Unless otherwise indicated, OPCs were purified from enzymatically disso-

ciated P7-P8 Sprague-Dawley (Charles Rivers) rat brains by immunopan-

ning and grown in serum-free defined medium, as described previously

(Dugas and Emery, 2013). Mouse OPCs were purified from transgenic

mice by immunopanning as described (Emery and Dugas, 2013). LatA,

CK-666, and CK-689 were from EMD Millipore, and Jasp was from Invitro-

gen. OLs were processed for immunostaining by standard methods and

stained with Alexa Fluor 488- or 594-phalloidin (Invitrogen) to visualize actin

filaments.

Myelinating cocultures of rat OPCs and dispersed RGC or DRG neurons

(Zuchero, 2014) were prepared essentially as described (Watkins et al.,

2008). Cultures were analyzed for percent cells expressing MBP and degree

of myelin ensheathment per OL using a custom automated imaging workflow

(Supplemental Experimental Procedures).

Fluorescence Microscopy

Cells and tissues were visualized by epifluorescence unless noted. Structured

illumination imaging was conducted with an OMX V4 Structured Illumination

microscope and SoftWoRx reconstruction software (GE Healthcare), with

the exception of Figure 2H, which was acquired using an Elyra SR-SIM micro-

scope and reconstruction software (Zeiss Microscopy). Identical illumination

and acquisition conditions were used for each experiment.

Biochemistry and Molecular Biology

For PI(4,5)P2 pull-down competition assays, we used native bovineMBP (EMD

Millipore), recombinant human cofilin-1 and gelsolin (gifts of Peter Bieling,

UCSF), and PI(4,5)P2-coated or uncoated (control) agarose beads (Echelon)

by the method of Gálvez-Santisteban et al. (2012). PCR, RT-PCR, and western

immunoblotting were carried out using standard methods (see Supplemental

Experimental Procedures).

Data Analysis and Statistics

All data acquisition and analysis were performed blinded to the experimental

condition. We used nested analysis to first average technical replicates (e.g.,

three to five adjacent cryosections for immunohistochemistry quantification,

two replicate immunoblots). In all cases n refers to biological replicates, which

are either a single animal or an experimental day for culture and biochemistry

experiments. Data shown are from all animals tested; none were treated as

outliers. Micrographs and blots were analyzed using NIH ImageJ and linearly

contrast adjusted for display using Adobe Photoshop, with identical settings

for each experiment. Data were analyzed and plotted using Excel (Microsoft)

and Prism (GraphPad Software). Unless otherwise stated, error bars are

SEM, and p values were calculated using Student’s t test for single compari-

sons or ANOVA followed by Dunnett’s multiple comparison test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three movies and can be found with this article online at
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