
Chapter 17

Principles Driving the Spatial Organization

of Rho GTPase Signaling at Synapses

Scott H. Soderling and Linda Van Aelst

Abstract The Rho proteins play critical roles in numerous aspects of neuronal

development, and mutations in their regulators (GEFs and GAPs) and effectors

underlie multiple neurodevelopmental and neurological disorders. How Rho

GTPase-mediated signaling can have a hand in regulating so many different

neurobiological processes remains a challenging question. An emerging theme is

that GAPs and GEFs, through their spatial/temporal regulation and/or through

additional protein–protein interactions, cooperate in making connections between

upstream signals and the downstream signaling output, engaging distinct effector

proteins. This chapter focuses on recent evidence illustrating distinct modes of

regulation and specialized roles of Rho regulators particularly in the context of

synaptic structure, function, and plasticity, and how their dysregulation affects

behavioral processes and contributes to disease.

Keywords Rho regulators • Rho effectors • Neuronal development • Synaptic
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17.1 Introduction

Rho-family GTPases (typified by Rho, Rac, and Cdc42) are a branch of the Ras

superfamily of small G-proteins, consisting of 22 different Rho GTPases. They

function as intracellular molecular switches that, among other functions, rapidly

activate actin polymerization and reorganization in vivo (Van Aelst and D’Souza-
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Schorey 1997; Hall 2012). Rho-family GTPases are active when bound to GTP,

which induces a conformational alteration that realigns two surface regions, known

as switch one and two regions (Abdul-Manan et al. 1999). Upon realignment, the

switch regions bind to and modulate the activity of a wide variety of downstream

effectors, including kinases and regulators of actin polymerization (Bishop and Hall

2000). Activation of Rho GTPases is mediated by Guanine Nucleotide Exchange

Factors (GEFs), while inactivation is accelerated by GTPase Activating Proteins

(GAPs) (Cook et al. 2013; Bos et al. 2007; Cherfils and Zeghouf 2013).

The birth of the Rho-family GTPase field was the discovery of Rho (Ras
homolog) (Madaule and Axel 1985), the founding member of the Rho family.

Interestingly, Rho was first identified from the sea slug Aplasia, using a low

stringency screen for homologs of the alpha subunit of human chorionic gonado-

tropin (hCG). The resulting cDNA clone however showed no significant similarity

to hCG but to Ras and was evolutionally conserved in humans, distinguishing it as a

new branch of the Ras superfamily of GTPases. It was subsequently shown in the

1990s by Alan Hall’s laboratory to potently regulate actin formation in cells

(Paterson et al. 1990). These seminal observations drove the formation of a new

field of study, which rapidly expanded, and has shown that the breadth of cellular

functions regulated by Rho-family GTPase activity is truly remarkable.

Almost 1 % of human proteins are either regulators or effectors for the 22 dif-

ferent Rho GTPases (Jaffe and Hall 2005). Consistent with the wide variety of

interaction partners, the regulation of Rho-family GTPase signaling pathways drive

many key functions of developing and mature neural networks, including polari-

zation, axonal guidance, dendritic arborization, intracellular trafficking, migration,

and synapse formation and plasticity (Govek et al. 2005; Luo 2000; Tolias

et al. 2011; Tahirovic and Bradke 2009; Guan and Rao 2003; Hall and Lalli

2010; Saneyoshi et al. 2008; Lai and Ip 2013; Colgan and Yasuda 2013). The

dysregulation of Rho-family GTPase pathways are also associated with some of the

most enigmatic neuropsychiatric disorders, including intellectual disability, schizo-

phrenia, and autism (Newey et al. 2005; Tolias et al. 2011; van Galen and Ramakers

2005; van Bokhoven 2011; Boda et al. 2010; DeGeer and Lamarche-Vane 2013;

Nadif Kasri and Van Aelst 2008).

Yet the discoveries that the Rho GTPases occupy a central role in so many

different neurobiological functions have also led to several conundrums. For

example, how can specificity be achieved downstream of the activation of Rho,

Rac, or Cdc42 when they seemingly have a role in so many cell functions? This

problem is exemplified by one of the remarkable features of the Rho-family

GTPases, which is their ability to interact with many different regulators and

effectors. For example, Rac activity is regulated by several different GEFs or

GAPs, many of which are co-expressed in the same cell. Furthermore, once

activated, Rac can bind to and modulate the activity of an even larger number of

different downstream effectors.

The large excess of regulators and effectors when compared to Rho GTPases

means that individual GTPases do not function as simple binary switches. Rather,

they behave as signaling multiplexers that can pair a given upstream cue with a
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specific cellular effector. The most important unanswered question in the field is

how a GTPase achieves specificity when faced with such a large diversity of

potential interactions? Assembling the correct complement of regulators and effec-

tors to fulfill specific neuronal functions is a major challenge in the field. Here we

review literature to propose that specificity of neuronal Rho GTPase functions is

achieved by three general mechanisms: (1) Input Targeting—interactions between

GAPs and GEFs with receptors; (2) Signaling Clustering by scaffolding and linker

proteins; and (3) Effector Clustering—linking GAPs and GEFs to downstream Rho

GTPase targets. For space considerations we primarily focus on examples of these

mechanisms that operate to regulate the functions of synapses. However these

mechanisms are also used to drive many other important tasks, including neural

migration and axonal outgrowth and guidance.

17.2 Input Targeting

Initial responses to external stimuli are transduced by the initial engagement of

neuronal transmembrane receptors, resulting in the rapid organization of adhesion,

trans-synaptic morphogenesis, and electrical responses to neurotransmitters. Thus,

an efficient mechanism to integrate specific responses to ligand binding is to

physically couple signaling molecules to receptors, ensuring the spatial and tem-

poral specificity between the initiation and propagation of synaptic signals. Recent

studies have uncovered several mechanisms by which GEFs and GAPs for Rho

GTPases are specifically tethered to receptors, and in many cases regulated by

neuronal receptor activity (Fig. 17.1a). These studies reveal that receptor binding is

an important mechanism to specify the timing of synapse development as well as

distinguish between excitatory versus inhibitory synapses.

17.2.1 Bidirectional Regulation of Excitatory Synapse
Formation by Eph Receptor and GEF Complexes

Eph receptors represent a large class of receptor tyrosine kinases that are classified

as either EphA or EphB receptors by their preference for a certain type of ephrin

ligands (Lai and Ip 2009). EphR-ephrin interactions are critical for excitatory

synaptogenesis, a process that must be regulated to allow for coordinated pre-

and postsynaptic specialization at the correct time and place during development

(Sheffler-Collins and Dalva 2012; Hruska and Dalva 2012). The molecular mech-

anisms by which EphB receptors regulate postsynaptic development have been

elucidated by several studies, which highlight a central role for receptor tethering of

Rho-family GEFs. Surprisingly, differential GEF anchoring to these receptors is

important for both the inhibition and promotion of dendritic spine formation. Thus,
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it appears the sequential recruitment of different GEFs to EphB receptors coordi-

nate the developmental timing of synapse development.

Early in dendritic development, before the initiation of spinogenesis, EphB

receptors are present but are likely to remain unbound to ephrins until a presynaptic

bouton makes contact. In this pre-synaptogenesis state, EphB receptors are in

complex with the GEF ephexin-5 (E5) (Margolis et al. 2010). E5 functions to

specifically activate RhoA. Active RhoA inhibits dendritic spine formation (Luo

2000; Nakayama et al. 2000; Tashiro et al. 2000). Mice lacking E5 have signifi-

cantly reduced levels of activated RhoA, indicating it is a major regulator of

neuronal RhoA in vivo. E5 knockout mice exhibit elevated numbers of excitatory

synapses, indicating that the GEF activity of E5 limits synaptogenesis. Importantly,

EphB receptor activation by ephrin binding (which promotes spine formation)

initiates the tyrosine phosphorylation of E5, triggering its recognition as a substrate

by the ubiquitin ligase Ube3a. Ube3a-mediated ubiquination leads to proteasomal

degradation and loss of E5, alleviating the E5-activated RhoA brake on

synaptogenesis. Loss of Ube3a is the primary cause of Angelman’s Syndrome

(Kishino et al. 1997; Matsuura et al. 1997), suggesting that altered regulation of

E5 levels may contribute to the synaptic abnormalities in these syndromes.

Fig. 17.1 Schematic of the organizational principles directing Rho-family GTPase signaling at

synapses. Three different mechanisms to organize Rho-family GTPase-based signaling complexes

are shown. In each panel the postsynaptic dendritic spine is shown with different schematics of

signaling complexes. Note that some complexes exist within inhibitory synapses (i.e., Neuroligin

2 and Collybisitin) rather than excitatory spines. (a) Input targeting representing protein–protein

complexes of Rho-family GTPase regulators (GEFs and GAPs) with different receptors present at

synapses. (b) Scaffold tethering representing the formation of complexes of GEFs or GAPs along

with downstream Rho-family effector proteins within a single protein complex. Note scaffolding

proteins such as GIT1 also incorporate regulators of GEFs and GAPs such as kinases to these

protein complexes. (c) Effector clustering occurs when GAPs or GEFs are in physical complex

with Rho-family GTPase effectors. This can allow for specific pairing of GTPase regulators to

individual downstream targets. Specific examples of protein interactions representing each mode

of signaling regulation are shown below
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Consistent with this possibility, Ube3a mutant mice, a model for Angelman’s

syndrome, have elevated levels of E5 (Margolis et al. 2010).

GEF-EphB interactions, however, orchestrate not only the RhoA inhibition of

synaptogenesis but also the subsequent promotion of synaptogenesis (Irie and

Yamaguchi 2002). EphB2 ligand binding potently stimulates Cdc42 activation in

neurons in a time course that corresponds with EphB2 auto-phosphorylation,

suggesting that activation of EphB2 is closely linked to Cdc42 activation.

Co-immunoprecipitation analysis demonstrated that EphB2 activates Cdc42 by

binding to the N-terminal region of Intersectin-1, which is a brain enriched

Cdc42 GEF (Irie and Yamaguchi 2002; Thomas et al. 2009). Intersectin-1 has

very low basal activity, which is stimulated upon its binding to EphB2. Importantly,

Cdc42 activity is critical for the maturation of spines, in part by activating the

Cdc42 effector protein N-WASP. N-WASP is a member of larger family of proteins

(including WAVE1) whose activation stimulates Arp2/3-dependent polymerization

of branched actin filaments that are required for spine head development during the

transition from dendritic filopodia to spines (Wegner et al. 2008; Hotulainen

et al. 2009). As discussed in the effector clustering section, Intersectin-1 interacts

with N-WASP as well (Hussain et al. 2001), suggesting a model of tight spatial and

temporal regulation of Cdc42 activation and effector binding within an EphB2

complex. Interestingly, activation of EphB2 also triggers the recruitment of the Rac

GEF Tiam-1 to sites of new synaptic contacts, resulting in the phosphorylation of

Tiam-1 and subsequent activation of Rac, the latter being important for spine

formation (Tolias et al. 2011). Thus Rac and Cdc42 activities downstream of

EphB2 are likely to cooperate to facilitate spine formation.

17.2.2 Focal Regulation of Rac by NMDA Receptor
Tethering of GEFs and GAPs

Upon maturation, excitatory postsynaptic spines contain a protein-rich postsynaptic

density (PSD) containing arrays of α-amino-3-hydroxy-5-methyl-4-isoxazole

propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type glutamate

receptors. These receptors organize signaling complexes of Rho-family GTPase

regulatory proteins and are anchored within the PSD by several associated actin

cytoskeletal proteins (Tada and Sheng 2006; Newpher and Ehlers 2009).

NMDA receptors (NMDARs) are tetramers predominately composed of NR1

and NR2 subunits. Their synaptic activity-dependent activation produces modifi-

cation of synaptic AMPARs and forms the basis of the well-established LTP (long-

term potentiation) and LTD (long-term depression) forms of synaptic plasticity

(Sudhof and Malenka 2008; Kessels and Malinow 2009; Huganir and Nicoll 2013).

NMDARs mediate calcium influx into the spine and are required for Rho-family

GTPase activation and actin polymerization during spine structural plasticity asso-

ciated with LTP (Govek et al. 2005; Cingolani and Goda 2008; Tolias et al. 2011;
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Kiraly et al. 2010a; Carlisle and Kennedy 2005). One mechanism driving this is the

specific association between the aforementioned Rac GEF Tiam-1 and the NR1

NMDAR subunit (Tolias et al. 2005). Activation of NR1 induces the rapid phos-

phorylation and activation of Tiam-1, presumably by calcium activation of

CaMKII. Tiam-1 activation of Rac mediates the induction of dendritic arborization

and spine development downstream of NR1 activity. The importance of Tiam-1

tethering to NR1 could be to facilitate its phosphorylation by CaMKII, which binds

to the NR2B subunit and is thereby locked in an active conformation (Bayer

et al. 2001; Sanhueza et al. 2011). Localization of Tiam-1 to NR1 may also bias

its activation by placing it within NMDAR local calcium micro-domains in the

spine. In this way, Tiam-1 can be positioned for the rapid phosphorylation by

NMDA-mediated CaMKII activation. As Tiam-1 forms also a stable interaction

with EphB2, it is noteworthy that EphB2 is important for NMDAR clustering and

function (Dalva et al. 2000; Takasu et al. 2002), thus placing Tiam-1 as a bridge

between these receptors.

NMDARs are also anchored within the postsynaptic density to actin by the actin

binding and crosslinking protein, α-actinin-2 (Wyszynski et al. 1997). Activity-

dependent rundown of NMDAR current is enhanced by destabilizing actin and is

blocked by stabilizing actin filaments, suggesting that tethering of NMDAR to the

actin cytoskeleton reduces its synaptic turnover (Rosenmund andWestbrook 1993).

Kalirin-7 is a PSD enriched Rac-specific GEF. It plays a role in spine development

and structural and functional plasticity (Penzes and Jones 2008) and stabilizes the

NMDAR through a specific interaction with the juxtamembrane region of the

NR2B subunit (Kiraly et al. 2011). It is thought that this binding may be compet-

itive with an AP2-binding site on NR2B that is important for stimulating NMDAR

endocytosis. Indeed, Kalirin-7 knockout mice have reduced levels of synaptic

NR2B, supporting the notion that it normally stabilizes the receptor at the synapse.

Importantly, Kalirin-7- and NR2B-deficient mice exhibit overlapping behavioral

phenotypes, including a deficit in conditioned place preference for cocaine

(Lemtiri-Chlieh et al. 2011; Kiraly et al. 2010b; Kiraly et al. 2011). This suggests

that the loss of Kalirin-7 interaction with NR2B in the Kalirin-7 knockout mice may

be important for the learning involved in this aspect of addiction.

The intracellular tail of NR2B additionally tethers the Rho-family GAP

p250GAP (also known as RICS) (Nakazawa et al. 2003; Okabe et al. 2003).

p250GAP knockdown increases Rac activity and increases spine number and

miniature excitatory postsynaptic potential (mEPSP) frequency, suggesting that

this GAP is important for regulating synaptogenesis via inhibition of Rac activity

(Impey et al. 2010). Importantly, the effect of p250GAP knockdown requires the

activity of Kalirin-7. Thus, the intriguing possibility exists that p250GAP and

Kalirin-7 coordinate both the activation and inactivation of Rac by local clustering

via NR2B. It is unclear if such a complex would be important for regulating

synaptogenesis, synaptic plasticity, or both. The regulation of p250GAP activity

is unknown, but it is possible that it could be clustered with NR2B to specifically

regulate pools of Rac activated by NMDAR-associated Kalirin-7. Finally, it should

be noted that p250GAP has recently been identified as a risk loci for schizophrenia-
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associated disorders (Ohi et al. 2012). This is interesting given the evidence linking

NMDAR hypofunction to schizophrenia (Coyle et al. 2003; Snyder and Gao 2013),

yet additional work with larger cohorts will be required to determine its possible

importance.

17.2.3 Interplay Between AMPA Receptors and RhoA
Activity via GEFs and GAPs

While Rac regulators are linked to NMDARs, it is intriguing that RhoA regulators

have been found in a complex with AMPARs. In a screen for AMPAR-binding

proteins, Kang et al identified the RhoA-specific GEF GEF-H1/Lfc as a component

of the AMPAR complex in the brain (Kang et al. 2009). This interaction was found

to be important for AMPAR activity-dependent regulation of spine development

(Kang et al. 2009). Previous studies had implicated AMPAR activity in the stabi-

lization of dendritic spines, with inhibition of AMPAR activity significantly reduc-

ing spine density (McKinney et al. 1999; Fischer et al. 2000). The underlying

signaling mechanisms remained however elusive. Kang et al. demonstrated that

the decrease in spine density caused by blocking AMPAR activity was associated

with an increase in RhoA activity. Even more importantly Kang el al. showed that

knockdown of GEF-H1 expression was able to eliminate both the decrease in spine

density and increase in RhoA activity. Thus, an increase in AMPAR activity is

likely to trigger the inactivation of GEF-H1 and consequently RhoA activity,

thereby stabilizing spine structure. How AMPAR activity influences GEF-H1/Lfc

function remains currently unknown. Notably, in spines GEF-H1/Lfc also forms a

complex with Spinophilin and Neurabin, two actin interacting proteins. Association

between GEF-H1/Lfc and these proteins was reported to modulate the actin cyto-

skeleton in a Rho-dependent manner, thereby contributing to spine development

(Ryan et al. 2005).

The Rho-GAP OPHN1 was also found to form a complex with AMPARs (Nadif

Kasri et al. 2009). OPHN1, however, does not seem to be regulated by AMPAR

activity, but instead OPHN1 regulates the stabilization of synaptic AMPARs. In

particular, NMDAR activation was shown to drive OPHN1 into dendritic spines,

where it then forms a complex with AMPAR. In turn, OPHN1 signaling regulates

activity-dependent AMPAR stabilization, as well as maintenance of spine structure,

thereby permitting synaptic maturation and plasticity. The mechanism by which

OPHN1 controls these events involves its Rho-GAP activity and a RhoA/Rho-

kinase signaling pathway (Nadif Kasri et al. 2009; Govek et al. 2004). A likely

scenario is that spine enriched OPHN1 contributes to the stabilization of AMPARs

by locally inactivating RhoA/Rho-kinase activities and modulating actin dynamics

(i.e., in the proximity of AMPARs). Consequently, decreased or defective OPHN1

signaling results in destabilization of synaptic AMPARs, leading to impairment in

synapse maturation and plasticity and eventually loss of spines. This is of particular
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relevance, as OPHN1 mutations have been identified in families with mental

retardation associated with cerebellar hypoplasia and lateral ventricle enlargement

(Billuart et al. 1998; Bergmann et al. 2003; Philip et al. 2003; des Portes et al. 2004;

Zanni et al. 2005). Thus, glutamatergic dysfunction and defects in early circuitry

development caused by OPHN1 mutations could be an important contributory

factor to the cognitive deficits observed in OPHN1 patients. Noteworthy, OPHN1

has also been implicated in another form of plasticity, namely mGluR-LTD that

relies on the activation of group I metabotropic glutamate receptors (mGluRs) and

occurs at later developmental stages (Nadif Kasri et al. 2011). In this case, however,

OPHN1, whose expression is rapidly induced by mGluR activation, exerts its

effects via interaction with members of the endophilin-A family, endophilin A2

and A3 (Endo 2/3), which mediate the downregulation of surface AMPARs during

mGluR-LTD (Nadif Kasri et al. 2011). Thus, OPHN1 likely operates during

adulthood to weaken synapses in response to behaviorally relevant stimuli. In

light of the previously reported role for LTD in behavioral flexibility and novelty

detection (Kemp and Manahan-Vaughan 2007; Luscher and Huber 2010), the

requirement of OPHN1 in mGluR-LTD could offer an intriguing potential expla-

nation for some of the behavioral deficits exhibited by OPHN1 patients.

17.2.4 Specification of Inhibitory Synapses by a Neuroligin
2 and Collybistin Interaction

Although excitatory synapses receive a disproportionate amount of attention, it

should be emphasized that Rho-family GTPase signaling is likely to be important

for inhibitory synapse formation as well. Collybistin, a Cdc42 GEF, is mutated in

human disorders of epilepsy/hyperekplexia and intellectual disability (Shimojima

et al. 2011; Lesca et al. 2011; Kalscheuer et al. 2009; Marco et al. 2008; Harvey

et al. 2004). One such mutation that is associated with epilepsy is a missense

mutation of a critical residue within the SH3 domain of collybistin (Harvey

et al. 2004). Recently it was discovered that this SH3 domain is selective for

binding to neuroligin 2, an organizer of nascent inhibitory synapses that mediates

trans-synaptic neuroligin/neurexin interactions (Poulopoulos et al. 2009). It was

previously shown that collybistin facilitates the membrane targeting of gephryin,

the primary scaffolding protein of inhibitory synapses, but that the SH3 domain of

collybistin inhibits this function (Harvey et al. 2004; Kins et al. 2000; Papadopoulos

et al. 2007). Gephyrin interacts with a conserved 15 amino acid region that is

present in all neuroligins (Poulopoulos et al. 2009). This suggested that there must

be a molecular mechanism to specify gephryin clustering at developing neuroligin

2 inhibitory synapses, but not at developing excitatory synapses organized by

neuroligin 1. Thus, the specific interaction between collybistin and neuroligin

2 appears to explain how specific clustering of gephyrin can occur at inhibitory

synapses. Importantly, collybistin knockout mice exhibit a striking loss of
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inhibitory synapses, which is accompanied by significant changes in hippocampal

plasticity. These effects are associated with increased levels of anxiety and

impaired spatial learning (Papadopoulos et al. 2007). As yet, it is still not clear

what the exact role of the GEF domain is for collybistin during inhibitory synapse

development or maintenance (Papadopoulos and Soykan 2011). Collybistin is a

Cdc42 GEF, but it remains to be seen whether Cdc42 regulates inhibitory synapse

formation or maintenance (Tyagarajan et al. 2011; Reddy-Alla et al. 2010). It is

possible that future work will identify additional Rho-family GTPases that are

activated by collybistin that regulate inhibitory synapses. It should be noted that

the Rac GAPs, srGAP2 and WRP/srGAP3, also interact directly with gephryin and

appear to facilitate inhibitory synapse formation (Okada et al. 2011). Indeed, loss of

WRP in mice results in reduced densities of gephyrin and GABA-A receptor

clusters in the hippocampal formation. Thus, inhibitory synapse function is likely

to be fine-tuned by coordinated action of GEFs and GAPs organized by a neuroligin

2/gephryin complex, yet the relevant GTPases remain to be clarified.

17.3 Scaffolding and Linker Proteins Focus Rho GTPase

Signaling

Transfer of information from one enzyme to the next in cell signaling cascades is

often organized around protein scaffolds. These platforms for signaling allow for

increased signal efficiency, signaling precision, and can also facilitate the diversity

of cellular functions a given enzyme can regulate (Pawson and Scott 2010). Given

that a single Rho-family GTPase can regulate multiple different cellular processes,

this has emerged as an important mechanism for specifying the whens and wheres

of a Rho-family GTPase action (Fig. 17.1b).

17.3.1 A GIT1 and Rac Signaling Scaffold Involved
in Synaptogenesis and Attention Deficit Hyperactivity
Disorder

GIT1 (G-protein-coupled receptor kinase-interacting protein 1) is a multifunctional

scaffolding and adaptor protein composed of multiple domains (Hoefen and Berk

2006). This includes a GAP domain for Arf GTPases as well as a Spa Homology

Domain that binds to the Rac and Cdc42 GEFs α-PIX and β-PIX. The interaction

between GIT1 and β-PIX is of high affinity, in the nanomolar range, and may be

organized in a heteropentameric structure containing a GIT1 dimer and β-PIX
trimer (Schlenker and Rittinger 2009). The functional implications of this higher

order structure are unknown, but may facilitate the coordinated binding of multiple

signaling molecules with β-PIX. β-PIX GEF activity is enhanced within the context
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of GIT1 by the ability of GIT1 to also scaffold the CaMKKβ and CaMKI kinases

(Saneyoshi et al. 2008). Kinases often interact with scaffolding proteins in order to

preferentially target their activity towards substrates. Indeed, CaMKKβ phosphor-

ylation of CaMKI is induced by NMDA-mediated calcium influx, activating the

CaMKI-mediated phosphorylation of β-PIX at serine 516. This potently stimulates

its GEF activity towards Rac and is required for excitatory synapse development.

Interestingly, β-PIX also binds to PAK (p21 activated kinase) via an N-terminal

SH3 domain (Mott et al. 2005), suggesting that the GIT1/β-PIX/PAK complex can

organize and regulate β-PIX GEF activity and the Rac-mediated activation of PAK.

Loss of GIT1 in mice results in reduced dendritic arborization and spine density and

in multiple Attention Deficit Hyperactivity Disorder (ADHD)-like behaviors (Won

et al. 2011; Menon et al. 2010; Schmalzigaug et al. 2009). Importantly, GIT1 SNPs

(single nucleotide polymorphisms) that reduce GIT1 expression are associated with

human ADHD (Won et al. 2011). In mice, GIT1 loss specifically reduces Rac1

activation, but does not alter the active levels of the Arf GTPase Arf6, supporting a

key role of GIT1 in Rac signaling (Won et al. 2011). Surprisingly GIT1 knockout

mice also have specific impairments in pre-synaptic inhibitory input, indicating that

GIT1 additionally regulates presynaptic organization and actin dynamics. This is

supported by other studies reporting that β-PIX regulates actin polymerization

required for synaptic vesicle recruitment during initial axonal bouton formation

(Sun and Bamji 2011).

17.3.2 Keeping Rac Activation in Check by a Disc-1/PSD95/
Kalirin-7 Complex

While the GIT1 signalosome serves to cluster β-PIX and downstream effectors of

Rac, it is also important to insure that Rac is held inactive until the appropriate

moment. Recent work identified the Rac GEF Kalirin-7 in a complex with Disc-1

and PSD-95 that limits Rac activation (Hayashi-Takagi et al. 2010). Disc-1 is a

schizophrenia susceptibility gene originally identified as a causal mutation in a

Scottish family with significant psychosis (Millar et al. 2000; St Clair et al. 1990).

PSD-95 is the major structural protein of the excitatory post-synaptic density that

links multiple signaling proteins to receptors at the postsynaptic membrane (Kim

and Sheng 2004). Disc-1 binding to Kalirin-7 inhibits its ability to bind to and

promote Rac activation (Hayashi-Takagi et al. 2010). Importantly, the complex

between Disc-1, Kalirin-7, and PSD95 is rapidly disassembled in response to

synaptic activity and NMDA activation. The release of Kalirin-7 from the inhibi-

tory complex corresponds with a rapid activation of synaptic Rac. Although the

effect of PSD95 on Kalirin-7 may be to enhance its localization to the PSD, its

dissociation in response to synaptic activity may also facilitate Rac activation. For

example, PSD95 interacts with the Rac GAPs BCR as well as with ABR that could

further oppose Rac activation (Oh et al. 2010). The long-term consequences of
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overactive Rac signaling or the loss of Disc-1 were also assessed, as glutamatergic

synapse dysfunction is implicated in schizophrenia (Hayashi-Takagi et al. 2010).

Interestingly, it was found that over time active Rac, or the loss of Disc-1,

significantly decreased spine size, which might be related to spine abnormalities

observed in postmortem schizophrenia samples. These results, in combination with

the GIT1 studies, reveal how scaffolding proteins can bidirectionally modulate Rac

signaling in space and time and indicate that the loss of this regulation may be

associated with neuropsychiatric disorders.

17.3.3 Tuning p190-RhoGAP Function by PAR-6 and Arg
to Control RhoA Activity in Spine and Dendrite
Stabilization

As mentioned above, in addition to Rac, the spatial-temporal control of RhoA

levels/activity is also critical for the proper formation and stabilization of dendritic

spines. While it is known that RhoA levels during synaptogenesis are regulated by

Ube3a-mediated ubiquitination and degradation of the Rho GEF ephexin-5, the

regulation of RhoA levels/activity in maturing spines to govern their maintenance/

stabilization is an enduring question. One key emerging player in the stabilization

of spines as well as dendritic branches is the p190A-RhoGAP (p190), which is

expressed at high levels in the adolescent/mature brain (Lamprecht et al. 2002;

Settleman 2003). Somewhat unexpectedly, the polarity protein PAR-6 in a complex

with atypical PKC (aPKC), but independent of its interaction with PAR-3, was

found to contribute to spine maintenance, by reducing the activity of RhoA in

spines in a p190-dependent manner (Zhang and Macara 2008). Indeed, evidence

was presented that PAR-6, via its N-terminal PB1 domain, binds to and recruits

aPKC to spines. Spine localized aPKC in turn either directly or indirectly triggers

the phosphorylation of p190, thereby locally inactivating RhoA activity and con-

tributing to the stabilization of spines (Zhang and Macara 2008). The upstream

input(s) that regulate PAR-6 in neurons still remain(s) unknown. While in other

systems, this involves the binding of PAR-6 via its CRIB domain to Cdc42-GTP;

this does not seem to be the case in neurons (Zhang and Macara 2008). A possible

scenario could be that the PAR-6/aPKC complex is coupled to AMPARs, as

described above for the Rho GEF GEF-H1/Lfc.

Additionally, p190 was found to be phosphorylated in neurons by Arg

(Abl-related gene), a member of the Abl non-receptor tyrosine kinase family

(Hernandez et al. 2004; Sfakianos et al. 2007). Neurons in mice that lack Arg

develop normally through postnatal day P21 (P21); however by P42 these mice lose

dendritic spines and synapses and display reductions in dendritic arbor size com-

plexity. Notably, these deficits are coincident with the impairment in memory tasks

by the loss of Arg in mice (Sfakianos et al. 2007; Kerrisk and Koleske 2013). Arg

promotes phosphorylation of p190, which then can bind to two SH2 domains in
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p120RasGAP (p120). p190 is recruited to the plasma membrane by the PH and

CalB domains of p120 GAP, where it then diminishes RhoA activity (Bradley

et al. 2006). Intriguingly, the Arg/p190-mediated reduction in RhoA activity, while

critical for dendrite arbor stability, does not appear to be involved in spine stabi-

lization (Lin et al. 2013). Indeed, reducing RhoA activity in Arg knockdown

neurons blocked dendrite loss, but did not rescue the spine/synapse loss observed

in these neurons. Instead, spine destabilization in Arg knockdown neurons was

prevented by blocking NMDAR-dependent relocalization of cortactin from spines

or by forcing cortactin into spines via fusion to an actin-binding region of Arg (Lin

et al. 2013). Thus, the Arg-p190 axis preserves dendrite structure in early adulthood

by attenuating Rho activity, while Arg interacts with the NMDAR and cortactin to

control spine stabilization. Together with the PAR6 studies, these results indicate

that dependent on what protein complex p190 is in, it dampens RhoA activity to

control either spine or dendrite stabilization.

17.3.4 Anchoring Rac by IP3K-A to Actin During Synaptic
Plasticity

Although the primary mechanism to regulate Rho-family GTPase signaling is by

the focal targeting of their regulators, the targeting of Rho-family GTPases them-

selves by scaffolding proteins can also occur. Perhaps the best example of this is

IP3K-A, an F-actin-binding lipid kinase (Schell et al. 2001). Prior work had

established that IP3K-A is highly expressed in neurons and phosphorylates inositol

1,4,5-trisphosphate (IP3) to generate inositol(1,3,4,5)tetra-kisphosphate (IP4). Thus

it modulates intracellular calcium release mediated by IP3 (Choi et al. 1990; Irvine

et al. 1986). Surprisingly, it was found that IP3K-A directly modulates actin

polymerization in cells, independent of its kinase activity (Windhorst et al. 2008;

Kim et al. 2009). IP3K-A is recruited to spines by synaptic activity via its F-actin-

binding domain and was found to bind selectively to activated Rac (Kim

et al. 2009). Importantly, the binding of active Rac to IP3K-A did not occlude the

ability of downstream effectors such as PAK to simultaneously bind Rac,

suggesting that IP3K-A could scaffold activated Rac to F-actin in a way that

potentiated its ability to further stimulate actin remodeling. The role of IP3K-A in

regulating Rac activity and targeting is likely to be important, as IP3K-A knockout

mice exhibit profound deficits in synaptic plasticity as well as learning and memory

paradigms (Kim et al. 2009).

406 S.H. Soderling and L. Van Aelst



17.4 Effector Clustering: Linking GAPs and GEFs

to Downstream Rho GTPase Targets

In order to influence cellular physiology, Rho-family GTPases must bind to and

regulate protein effectors. Rho effector proteins have evolved several domains,

which can function as specific docking sites for GTP-bound Rho GTPases. Canon-

ical activity-dependent GTPase-binding domains include the Cdc42/Rac Interac-

tive Binding (CRIB) domain from the PAK kinases; the Protein kinase C-related

homology region 1 (HR1) domain typified by Rho-associated kinase, PKN, and

Rhotekin kinase; and the GTPase Binding Domains (GBD) of formins (Burbelo

et al. 1995; Shibata et al. 1996; Flynn et al. 1998; Rose et al. 2005). One of the most

efficient mechanisms to regulate how Rho-family GTPase signaling can shape

cellular responses is to physically couple the regulators of their activation to

downstream effectors (Fig. 17.1C). In this way, effectors can be selectivity tuned

to the action of specific Rho-family GTPases. Additionally, this type of interaction

allows for bidirectional coordination of signaling events, with effectors sometimes

influencing the activity of GEFs and GAPs upon binding. Alternatively, GAP or

GEF binding may directly influence effector activity in addition to modulating their

activation by Rho-family GTPases. Although this is a relatively newer concept for

Rho-family signal integration, several important examples have emerged which are

discussed below.

17.4.1 Enhancing Cdc42 Signaling by an Intersectin-l
and N-WASP Complex

One of the earliest examples of this type of signaling cascade organization came

from the observation that the long splice variant of the endocytic protein,

Intersectin-l, contains an additional DH-PH domain specific for Cdc42 activation

that is not found in the short splice variant (Intersectin-s) (Hussain et al. 2001;

Thomas et al. 2009; Pucharcos et al. 1999). While Intersectin-s is widely expressed

in many cell types, Intersectin-l is almost exclusively neuronal. Surprisingly, it was

found that although the DH domain of Intersectin-l could specifically bind to and

activate Cdc42, full-length Intersectin-l does not, suggesting that Intersectin-l exists

in an autoinhibited state (Hussain et al. 2001). Furthermore, the ability of

Intersectin-l to stimulate actin dynamics in cells is blocked by inhibitory

N-WASP activity (a Cdc42 effector that activates Arp2/3-dependent actin poly-

merization), suggesting a link between Intersectin-l, Cdc42, and N-WASP (Hussain

et al. 2001). Activation of Intersectin-l is mediated by binding to N-WASP via the

SH3 domain(s) of Intersectin-l with the proline-rich domain of N-WASP. The

release of Intersectin-l inhibition is likely mediated by an N-WASP interaction

with the fifth SH3 domain (SH3E) of Intersectin-l (Zamanian and Kelly 2003).

Surprisingly, the mechanism of Intersectin-l inhibition is probably distinct from
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other SH3-inhibited GEFs, since mutation of the proline-binding groove of SH3E

does not alter its inhibition, suggesting that inhibition and its release are not via a

direct competition for SH3 domain ligand binding. Consistent with this, recent

crystal structures have suggested that the Intersectin-l SH3E domain uses an

interface distinct from proline ligand binding to interact with the DH domain,

which may occlude GTPase binding (Ahmad and Lim 2010). As discussed above,

the Intersectin-l and N-WASP interaction is important for EphB regulation of

synaptogenesis and spine maturation. Recent work also supports a role for

Intersectin-l and N-WASP in facilitating somato-dendritic endocytosis, which

may involve actin-mediated pushing of clathrin-coated vesicles into cells during

scission (Thomas et al. 2009; Merrifield et al. 2004; Benesch et al. 2005).

17.4.2 GAP-Mediated Control of Rac1 Signaling to WAVE1

Like N-WASP, WAVE1 is a Rho-family GTPase effector protein, expressed

throughout the CNS and whose function is to activate Arp2/3 complex-mediated

branched actin filament polymerization (Padrick and Rosen 2010; Pollitt and Insall

2009). Instead of functioning downstream of Cdc42, WAVE1 senses Rac activation

to regulate spine morphogenesis and activity-dependent synaptic plasticity such as

LTP and LTD (Soderling et al. 2007). Analysis of WAVE1-deficient mice indicates

it is critical for many behaviors, including anxiety, sensorimotor function, and

learning and memory (Soderling et al. 2003). Mass spectrometry analysis of

WAVE1-associated proteins led to the identification of the mechanism by which

WAVE1 senses Rac activation and how this activation is tuned by negative

feedback (Eden et al. 2002). Active Rac binds to the Rac effector CYFIP1 (also

known as SRA-1) and induces the dissociation of CYFIP1 and several associated

inhibitory proteins (Abi-1/2 and Nap1), allowing WAVE1 to interact with and

stimulate Arp2/3-dependent actin polymerization. Interestingly, analysis of the

WAVE1 complex of proteins also identified a neuronal Rac GAP protein, WRP

(also known as srGAP3) (Soderling et al. 2002). WRP contains a carboxyl-terminal

SH3 domain that binds directly to WAVE1 within the poly-proline-rich region,

analogous to the Intersectin-l and N-WASP complex. Notably, WAVE1 mice

mutants for the WRP-binding site display abnormal dendritic spines, altered plas-

ticity, and subtle deficits in memory, indicating that the regulation of Rac activity

within the WAVE1 complex is a crucial feature of the signaling pathway (Soderling

et al. 2007). Moreover, WRP is also likely to regulate WAVE1-mediated actin

dynamics in specific spatial contexts, as it contains a unique N-terminal inverse

F-BAR domain that senses and induces dendritic filopodial formation during the

earliest stages of spine formation (Carlson et al. 2011). WRP has been implicated in

several human neuropsychiatric and developmental disorders, including intellectual

disability associated with 3p-syndrome and schizophrenia (Endris et al. 2002;

Addington and Rapoport 2009; Wilson et al. 2011). Consistent with a role of
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WRP in contributing to these syndromes, multiple aspects of these disorders are

modeled in mice lacking WRP (Carlson et al. 2011; Waltereit et al. 2012).

17.4.3 Regulation of Formin-Mediated Actin Remodeling by
SrGAP2

In addition to the regulation of N-WASP and WAVE1, Rho GTPases also potently

stimulate actin remodeling through the regulation of the Diaphanous-related

formins. Formins form a large family of proteins (15 in mammalians) whose

actin regulatory properties are kept in check by an autoinhibition mechanism

(Chesarone et al. 2010). Rho GTPases physically disrupt this autoinhibition by

binding within a GTPase-binding domain (Rose et al. 2005; Otomo et al. 2005).

Relieving this autoinhibiton through GTP-dependent binding unmasks formin

activity, resulting in either actin polymerization of linear filaments or actin filament

severing, depending on the type of formin. Recently it was discovered that the Rac

GAP srGAP2, a close homolog of WRP, binds the formin FMNL1 through its SH3

domain, analogous to the association of WRP with WAVE1 (Mason et al. 2011).

srGAP2 is implicated in neocortical development by facilitating the formation of

leading edge processes of migrating newborn neurons that are necessary to effec-

tively migrate to the correct laminar position within the cortical plate as well as

dendritic spine maturation (Guerrier et al. 2009; Charrier et al. 2012). Of note,

srGAP2 has two main duplicates in humans (SRGAP2B and SRGAP2C), which

encode a truncated F-BAR domain that interacts with ancestral SRGAP2 to inhibit

its function. Interestingly, expression of the SRGAP2C paralog in mouse cortical

neurons in vivo phenocopies srGAP2 deficiency, leading to the emergence of

human-specific features, including neoteny during spine maturation and increased

density of longer spines (Charrier et al. 2012; Dennis et al. 2012). The interaction of

srGAP2 with FMNL1 does not occur until after Rac has activated the formin,

meaning the formation of the complex is temporally regulated by an activity-

dependent conformational change (Mason et al. 2011). srGAP2 binds to a critical

region of the formin that appears to be required for FMNL1 activity, which is to

sever actin filaments in response to active Rac. The in vivo role of actin severing is

still unclear, but is likely to result in remodeling of existing actin networks into

newly polymerized filaments by exposing barbed ends of actin that are competent

for additional actin subunit assembly. Remarkably, reconstitution of the complex

using purified components showed that the srGAP2 SH3 domain potently inhibits

the FMNL1 actin severing activity (Mason et al. 2011). Together these data indicate

that upon activation, srGAP2 binds FMNL1 and shuts off both the upstream

activation signal Rac and the functional output of severing actin filaments. In this

way the srGAP2 and FMNL1 complex may function as a timing mechanism to limit

the extent of actin severing in vivo.
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17.5 Future Directions

The sophistication and nuances of Rho-family GTPase signaling are only matched

by the diversity of the neurophysiologic processes they regulate. The above studies

have begun to illuminate the molecular mechanisms through which they achieve

these important functions and how the dysfunction of their regulation ultimately

leads to neurodevelopmental and neuropsychiatric disorders. Proteomic analysis of

GTPase regulators suggests that their incorporation into molecular complexes is

likely to be a common and important theme (Okada et al. 2011). Beyond identifying

and characterizing the complexes, however, new technologies and concepts will be

required to decode the importance of the spatial and temporal regulation of

Rho-family signaling. Recent advances in super-resolution imaging, including

PALM, SIM, STORM, and array tomography promise to help reveal where these

complexes exist in synaptic space, leading to new insights into their possible

functions (Schermelleh et al. 2010; Ahmed 2011; Triller and Choquet 2008).

Additionally the ability to monitor the dynamics of sub-synaptic pools of actin

using these techniques will likely be paired with the genetic disruption of specific

complexes, allowing the field to delve more deeply into not only cataloging the

nanometer scale location of these complexes but also their functional relevance at

high resolution. 2-photon FLIM imaging of the spatial and temporal activity of Rho

GTPases promises to reveal new insights into how these pathways are orchestrated

at submicron and millisecond timescales. For example, recent work has demon-

strated that the induction of spine-specific LTP leads to activation of Rho and

Cdc42 activation, but with differing spatial profiles (Murakoshi et al. 2011). These

approaches may also be combined with disruptions of specific GEF and GAP

complexes, using high resolution imaging of activity reporters to reveal their

importance in space and in time. New advances in light-gated regulation of

Rho-GTPase activity using genetically encoded photo-switches, such as the LOV

(light, oxygen, voltage) domain, also promises new avenues to investigate how

GTPase activity modulates specific neuronal functions with the spatial resolution of

light diffraction (Wu et al. 2009). As recently demonstrated for the role of Rac in

addiction, when combined with technology for optogenetics, it promises to reveal

the importance of GTPase signaling in specific brain regions under behavioral

paradigms (Dietz et al. 2012). Most of these new imaging advances, however,

will need to be paired with a deeper understanding of the biochemical nature of how

GTPase signaling complexes are physically put together in order to manipulate

their activity in a spatial manner. Caution must also be exerted when

overexpressing proteins to understand their functions, particularly the GTPases.

For example it has recently been shown that the Rho-family GDIs are limiting, and

that the overexpression of one GTPase may alter the activity and localization of

other endogenous GTPases by outcompeting the limiting pool of GDI (Boulter

et al. 2010). Thus, a combinatorial approach, using biochemical, genetic, and new

imaging approaches to dissect and understand how GTPase signaling is organized

in space and time, will likely be required. Yet the rewards for such approaches will
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be great as it is already clear that Rho GTPases govern the whens and wheres of

neuronal development and synaptic responses.
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